Abstract

Multigigabit-per-second true time delay (TTD) was experimentally demonstrated by use of optical coherent transient techniques in a Tm3+:YAG crystal. A delay accuracy of 1  ps and a delay resolution of 7  ps (both measurement limited) were achieved. The retrieved data retained good fidelity.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Brookner, Sci. Am. 252, 94 (1985).
    [CrossRef]
  2. H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).
  3. S. Sabatini and M. Tarantino, Multifunction Array Radar (Artech House, Boston, Mass., 1994).
  4. R. A. Soref, Appl. Opt. 23, 3736 (1984).
    [CrossRef]
  5. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
    [CrossRef]
  6. R. Soref, Appl. Opt. 31, 7395 (1992).
    [CrossRef] [PubMed]
  7. M. Wickman, L. Dozal, L. J. Lembo, and J. C. Brook, Proc. SPIE 2560, 148 (1995).
    [CrossRef]
  8. E. N. Toughlian and H. Zmuda, J. Lightwave Technol. 8, 1824 (1990).
    [CrossRef]
  9. K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996).
    [CrossRef] [PubMed]
  10. M. Tian, J. Zhao, Z. Cole, R. Reibel, and W. R. Babbitt, J. Opt. Soc. Am. B 18, 673 (2001).
    [CrossRef]
  11. K. D. Merkel and W. R. Babbitt, Opt. Lett. 23, 528 (1998).
    [CrossRef]
  12. K. D. Merkel, Z. Cole, and W. R. Babbitt, J. Lumin. 86, 375 (2000).
    [CrossRef]
  13. R. T. Weverka, K. Wagner, and A. Sarto, Appl. Opt. 35, 1344 (1996).
    [CrossRef] [PubMed]

2001 (1)

2000 (1)

K. D. Merkel, Z. Cole, and W. R. Babbitt, J. Lumin. 86, 375 (2000).
[CrossRef]

1998 (1)

1996 (2)

1995 (1)

M. Wickman, L. Dozal, L. J. Lembo, and J. C. Brook, Proc. SPIE 2560, 148 (1995).
[CrossRef]

1992 (1)

1991 (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

1990 (1)

E. N. Toughlian and H. Zmuda, J. Lightwave Technol. 8, 1824 (1990).
[CrossRef]

1985 (1)

E. Brookner, Sci. Am. 252, 94 (1985).
[CrossRef]

1984 (1)

Babbitt, W. R.

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Brook, J. C.

M. Wickman, L. Dozal, L. J. Lembo, and J. C. Brook, Proc. SPIE 2560, 148 (1995).
[CrossRef]

Brookner, E.

E. Brookner, Sci. Am. 252, 94 (1985).
[CrossRef]

Cole, Z.

Dozal, L.

M. Wickman, L. Dozal, L. J. Lembo, and J. C. Brook, Proc. SPIE 2560, 148 (1995).
[CrossRef]

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Lembo, L. J.

M. Wickman, L. Dozal, L. J. Lembo, and J. C. Brook, Proc. SPIE 2560, 148 (1995).
[CrossRef]

Merkel, K. D.

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Reibel, R.

Sabatini, S.

S. Sabatini and M. Tarantino, Multifunction Array Radar (Artech House, Boston, Mass., 1994).

Sarto, A.

Soref, R.

Soref, R. A.

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Tarantino, M.

S. Sabatini and M. Tarantino, Multifunction Array Radar (Artech House, Boston, Mass., 1994).

Tian, M.

Toughlian, E. N.

E. N. Toughlian and H. Zmuda, J. Lightwave Technol. 8, 1824 (1990).
[CrossRef]

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).

Wagner, K.

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Weverka, R. T.

Wickman, M.

M. Wickman, L. Dozal, L. J. Lembo, and J. C. Brook, Proc. SPIE 2560, 148 (1995).
[CrossRef]

Zhao, J.

Zmuda, H.

E. N. Toughlian and H. Zmuda, J. Lightwave Technol. 8, 1824 (1990).
[CrossRef]

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).

Appl. Opt. (3)

J. Lightwave Technol. (2)

E. N. Toughlian and H. Zmuda, J. Lightwave Technol. 8, 1824 (1990).
[CrossRef]

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

J. Lumin. (1)

K. D. Merkel, Z. Cole, and W. R. Babbitt, J. Lumin. 86, 375 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Proc. SPIE (1)

M. Wickman, L. Dozal, L. J. Lembo, and J. C. Brook, Proc. SPIE 2560, 148 (1995).
[CrossRef]

Sci. Am. (1)

E. Brookner, Sci. Am. 252, 94 (1985).
[CrossRef]

Other (2)

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).

S. Sabatini and M. Tarantino, Multifunction Array Radar (Artech House, Boston, Mass., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. (b) Multipath delay line for generation of input data sequence.

Fig. 2
Fig. 2

Upper trace, 1 0 1 1 0 1 input data sequence at 4 Gbits/s. Lower trace, output of the delayed data sequence (echo) from the crystal, including scattered light from Beam  1, input data (pulse  3), and the leakage of Beam  2 from AOM1. All curves were averaged over 50  shots measured with a 12-GHz photodetector and recorded with a 3-GHz oscilloscope.

Fig. 3
Fig. 3

Delayed data sequence averaged over 50 single shots and normalized at various lengths of delay line with respect to the nominal position at 2.91  m (9.7  ns).

Fig. 4
Fig. 4

Measured delays (filled circles) and expected delays (solid line) versus introduced path differences.

Metrics