Abstract

An experimental technique is demonstrated that permits direct optical measurement of ultrafast material transients during a single excitation–relaxation cycle. Reflection of a linearly chirped, supercontinuum optical pulse from a gold film with changing surface temperature induced by an ultrafast pump pulse allows the thermal transients to be encoded onto the spectrum of the probe pulse. Calibrating the chirp of the probe pulse and the wavelength sensitivity of the sample permits mapping of the measured transient into the time domain. Measurements are completed over the course of 100  ps with subpicosecond time resolution. Results obtained with this technique are compared with similar measurements obtained with conventional pump–probe correlation techniques.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
    [Crossref]
  2. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
    [Crossref]
  3. T. Q. Qiu and C. L. Tien, J. Heat Transfer 115, 835 (1993).
    [Crossref]
  4. O. B. Wright, Phys. Rev. B 49, 9985 (1994).
    [Crossref]
  5. Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
    [Crossref]
  6. G. P. Wakeham and K. A. Nelson, Opt. Lett. 25, 505 (2000).
    [Crossref]
  7. C. Y. Chien, B. LaFontaine, A. Desparois, Z. Jiang, J. W. Johnston, J. C. Kieffer, H. Pepin, F. Vidal, and H. P. Mercure, Opt. Lett. 25, 578 (2000).
    [Crossref]
  8. W. L. Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15, 2396 (1977).
    [Crossref]
  9. M. D. Feit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
    [Crossref]
  10. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [Crossref]
  11. C. J. K. Richardson, “Qualitative analysis of picosecond duration thermoelastic transients in polycrystalline metal thin films,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 2000).
  12. P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
    [Crossref]

2000 (2)

1998 (1)

Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[Crossref]

1994 (1)

O. B. Wright, Phys. Rev. B 49, 9985 (1994).
[Crossref]

1993 (1)

T. Q. Qiu and C. L. Tien, J. Heat Transfer 115, 835 (1993).
[Crossref]

1988 (1)

1986 (2)

C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
[Crossref]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
[Crossref]

1977 (1)

W. L. Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15, 2396 (1977).
[Crossref]

1972 (1)

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

Bloembergen, N.

W. L. Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15, 2396 (1977).
[Crossref]

Cheyssac, P.

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

Chien, C. Y.

Desparois, A.

Eesley, G. L.

C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
[Crossref]

Feit, M. D.

Fleck, J. A.

Garrigos, R.

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

Grahn, H. T.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
[Crossref]

Jiang, Z.

Johnston, J. W.

Kieffer, J. C.

Kofman, R.

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

LaFontaine, B.

Liu, P.

W. L. Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15, 2396 (1977).
[Crossref]

Maris, H. J.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
[Crossref]

Mercure, H. P.

Nelson, K. A.

Paddock, C. A.

C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
[Crossref]

Penavaire, L.

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

Pepin, H.

Qiu, T. Q.

T. Q. Qiu and C. L. Tien, J. Heat Transfer 115, 835 (1993).
[Crossref]

Richard, J.

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

Richardson, C. J. K.

C. J. K. Richardson, “Qualitative analysis of picosecond duration thermoelastic transients in polycrystalline metal thin films,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 2000).

Saissy, A.

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

Smith, W. L.

W. L. Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15, 2396 (1977).
[Crossref]

Tauc, J.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
[Crossref]

Thomsen, C.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
[Crossref]

Tien, C. L.

T. Q. Qiu and C. L. Tien, J. Heat Transfer 115, 835 (1993).
[Crossref]

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

Vidal, F.

Wakeham, G. P.

Wright, O. B.

O. B. Wright, Phys. Rev. B 49, 9985 (1994).
[Crossref]

Zhang, X.-C.

Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[Crossref]

Appl. Phys. Lett. (1)

Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

J. Appl. Phys. (1)

C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
[Crossref]

J. Heat Transfer (1)

T. Q. Qiu and C. L. Tien, J. Heat Transfer 115, 835 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. A (1)

W. L. Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15, 2396 (1977).
[Crossref]

Phys. Rev. B (2)

O. B. Wright, Phys. Rev. B 49, 9985 (1994).
[Crossref]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
[Crossref]

Thin Solid Films (1)

P. Cheyssac, R. Garrigos, R. Kofman, L. Penavaire, J. Richard, and A. Saissy, Thin Solid Films 13, 275 (1972).
[Crossref]

Other (1)

C. J. K. Richardson, “Qualitative analysis of picosecond duration thermoelastic transients in polycrystalline metal thin films,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the chirped, white-light detection system.

Fig. 2
Fig. 2

Equilibrium spectral intensity (dotted curves) and the perturbed spectral intensity (solid curves) of a chirped white-light continuum probe pulse reflected from a 237-nm-thick gold film upon silicon.

Fig. 3
Fig. 3

Successive measurements of the thermal transient in gold that results from a series of time-delayed pump pulses. The change in the wavelength of the peak position is a result of the chirp of the probe pulse. The change in peak height is a result primarily of the wavelength dependence of the thermoreflective sensitivity parameter.

Fig. 4
Fig. 4

Comparison of the surface reflectivity measurements taken of the corrected (open circles), uncorrected (filled triangles) chirped, white-light detection system and the conventional, optical-correlation detection system (filled squares). Inset, calibration of the chirp imparted to the white-light probe pulse and wavelength dependence of the thermoreflective sensitivity parameter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔR/Rλ=IPλ-IEλ/IEλ.
ΔR/Rλ=νeλTe+νlλTl+νϵλTϵ,

Metrics