Abstract

We designed, realized, and tested what is believed to be the first real-time, full-color, autostereoscopic three-dimensional (3-D) display with a micromirror array. Compared with the diffractive partial pixel architecture [Opt.  Lett.   201418 (1995)], this approach has certain advantages: (1) Micromirrors are reflective and thus achromatic (panchromatic) and (2) a variety of displays can be used as the image source. We used backlit transparencies to test the system and then used an ordinary color CRT to show several computer-generated full-color 3-D animations.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton and J. S. Kollin, “Three-dimensional display system,” U.S. patent5,172,251 (December15, 1992).
  2. S. Chen and M. R. Chatterjee, “Implementation of a spatially multiplexed pixelated three-dimensional display by use of a holographic optical element array,” Appl. Opt. 37, 7504–7513 (1998).
    [CrossRef]
  3. B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Cathode ray sphere: a prototype system to display volumetric three-dimensional images,” Opt. Eng. 33, 180–186 (1994).
    [CrossRef]
  4. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
    [CrossRef]
  5. C. Penciu and D. L. MacFarlane, “Fabrication and characterization of a volumetric three-dimensional display using ion-exchanged integrated waveguides,” Opt. Eng. 39, 565–571 (2000).
    [CrossRef]
  6. C. D. Wickens, “Three-dimensional stereoscopic display implementation: guidelines derived from human visual capabilities,” in Proc. SPIE 1256, 2–11 (1990).
    [CrossRef]
  7. M. Ziegler, L. Falkenhagen, R. ter Horst, and D. Kalivas, “Evolution of stereoscopic and three-dimensional video,” Signal Process. 14, 173–194 (1998).
  8. M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Real-time three-dimensional display based on the partial pixel architecture,” Opt. Lett. 20, 1418–1420 (1995).
    [CrossRef] [PubMed]
  9. G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
    [CrossRef]

2000

C. Penciu and D. L. MacFarlane, “Fabrication and characterization of a volumetric three-dimensional display using ion-exchanged integrated waveguides,” Opt. Eng. 39, 565–571 (2000).
[CrossRef]

1998

S. Chen and M. R. Chatterjee, “Implementation of a spatially multiplexed pixelated three-dimensional display by use of a holographic optical element array,” Appl. Opt. 37, 7504–7513 (1998).
[CrossRef]

M. Ziegler, L. Falkenhagen, R. ter Horst, and D. Kalivas, “Evolution of stereoscopic and three-dimensional video,” Signal Process. 14, 173–194 (1998).

1996

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
[CrossRef]

1995

1994

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Cathode ray sphere: a prototype system to display volumetric three-dimensional images,” Opt. Eng. 33, 180–186 (1994).
[CrossRef]

1990

C. D. Wickens, “Three-dimensional stereoscopic display implementation: guidelines derived from human visual capabilities,” in Proc. SPIE 1256, 2–11 (1990).
[CrossRef]

Benton, S. A.

S. A. Benton and J. S. Kollin, “Three-dimensional display system,” U.S. patent5,172,251 (December15, 1992).

Blundell, B. G.

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Cathode ray sphere: a prototype system to display volumetric three-dimensional images,” Opt. Eng. 33, 180–186 (1994).
[CrossRef]

Chatterjee, M. R.

Chen, S.

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Falkenhagen, L.

M. Ziegler, L. Falkenhagen, R. ter Horst, and D. Kalivas, “Evolution of stereoscopic and three-dimensional video,” Signal Process. 14, 173–194 (1998).

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Horrell, D. K.

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Cathode ray sphere: a prototype system to display volumetric three-dimensional images,” Opt. Eng. 33, 180–186 (1994).
[CrossRef]

Jones, M. W.

G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
[CrossRef]

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Real-time three-dimensional display based on the partial pixel architecture,” Opt. Lett. 20, 1418–1420 (1995).
[CrossRef] [PubMed]

Kalivas, D.

M. Ziegler, L. Falkenhagen, R. ter Horst, and D. Kalivas, “Evolution of stereoscopic and three-dimensional video,” Signal Process. 14, 173–194 (1998).

Kollin, J. S.

S. A. Benton and J. S. Kollin, “Three-dimensional display system,” U.S. patent5,172,251 (December15, 1992).

Kowel, S. T.

G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
[CrossRef]

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Real-time three-dimensional display based on the partial pixel architecture,” Opt. Lett. 20, 1418–1420 (1995).
[CrossRef] [PubMed]

Kulick, J. H.

G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
[CrossRef]

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Real-time three-dimensional display based on the partial pixel architecture,” Opt. Lett. 20, 1418–1420 (1995).
[CrossRef] [PubMed]

Lindquist, R. G.

G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
[CrossRef]

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Real-time three-dimensional display based on the partial pixel architecture,” Opt. Lett. 20, 1418–1420 (1995).
[CrossRef] [PubMed]

MacFarlane, D. L.

C. Penciu and D. L. MacFarlane, “Fabrication and characterization of a volumetric three-dimensional display using ion-exchanged integrated waveguides,” Opt. Eng. 39, 565–571 (2000).
[CrossRef]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Nordin, G. P.

G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
[CrossRef]

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Real-time three-dimensional display based on the partial pixel architecture,” Opt. Lett. 20, 1418–1420 (1995).
[CrossRef] [PubMed]

Penciu, C.

C. Penciu and D. L. MacFarlane, “Fabrication and characterization of a volumetric three-dimensional display using ion-exchanged integrated waveguides,” Opt. Eng. 39, 565–571 (2000).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Schwarz, A. J.

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Cathode ray sphere: a prototype system to display volumetric three-dimensional images,” Opt. Eng. 33, 180–186 (1994).
[CrossRef]

ter Horst, R.

M. Ziegler, L. Falkenhagen, R. ter Horst, and D. Kalivas, “Evolution of stereoscopic and three-dimensional video,” Signal Process. 14, 173–194 (1998).

Wickens, C. D.

C. D. Wickens, “Three-dimensional stereoscopic display implementation: guidelines derived from human visual capabilities,” in Proc. SPIE 1256, 2–11 (1990).
[CrossRef]

Ziegler, M.

M. Ziegler, L. Falkenhagen, R. ter Horst, and D. Kalivas, “Evolution of stereoscopic and three-dimensional video,” Signal Process. 14, 173–194 (1998).

Appl. Opt.

Opt. Eng.

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Cathode ray sphere: a prototype system to display volumetric three-dimensional images,” Opt. Eng. 33, 180–186 (1994).
[CrossRef]

C. Penciu and D. L. MacFarlane, “Fabrication and characterization of a volumetric three-dimensional display using ion-exchanged integrated waveguides,” Opt. Eng. 39, 565–571 (2000).
[CrossRef]

G. P. Nordin, M. W. Jones, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display,” Opt. Eng. 35, 3404–3412 (1996).
[CrossRef]

Opt. Lett.

Proc. SPIE

C. D. Wickens, “Three-dimensional stereoscopic display implementation: guidelines derived from human visual capabilities,” in Proc. SPIE 1256, 2–11 (1990).
[CrossRef]

Science

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Signal Process.

M. Ziegler, L. Falkenhagen, R. ter Horst, and D. Kalivas, “Evolution of stereoscopic and three-dimensional video,” Signal Process. 14, 173–194 (1998).

Other

S. A. Benton and J. S. Kollin, “Three-dimensional display system,” U.S. patent5,172,251 (December15, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Using a scanning micromirror array to redirect light from an image source to the appropriate viewing zones.

Fig. 2
Fig. 2

Fabricated micromirror array with an electroplated permalloy layer: (a) view from the top, (b) view from another angle.

Fig. 3
Fig. 3

Optical system design with a double-opening pupil (inset): (a) L1 and R1 viewing zones, (b) L2 and R2 viewing zones.

Fig. 4
Fig. 4

Color test result for electrostatic actuation: (a) image source, (b) left image, (c) right image.

Fig. 5
Fig. 5

3-D image test result: (a) image source, (b) left image, (c) right image.

Fig. 6
Fig. 6

One frame of the 3-D animation: (a) left image, (b) right image.

Metrics