We report a method for extracting the birefringence properties of biological samples with micrometer-scale resolution in three dimensions, using a new form of polarization-sensitive optical coherence tomography. The method measures net retardance, net fast axis, and total reflectivity as a function of depth into the sample. Polarization sensing is accomplished by illumination of the sample with at least three separate polarization states during consecutive acquisitions of the same pixel, A scan, or B scan. The method can be implemented by use of non-polarization-maintaining fiber and a single detector. In a calibration test of the system, net retardance was measured with an average error of 7.5° (standard deviation 2.2°) over the retardance range 0° to 180°, and a fast axis with average error of 4.8° over the range 0° to 180°.

© 2001 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, J. Opt. Soc. Am. B 9, 903 (1992).
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, Opt. Lett. 22, 934 (1997).
    [Crossref] [PubMed]
  3. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, Opt. Lett. 25, 1355 (2000).
  4. J. F. de Boer, T. E. Milner, and J. S. Nelson, Opt. Lett. 24, 300 (1999).
  5. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, and M. J. Everett, Appl. Opt. 37, 6026 (1998).
  6. J. De Boer, Z. Chen, J. S. Nelson, S. Srinivas, and A. Malekafzali, Opt. Express 3, 212 (1998), http://www.opticsexpress.org .
    [Crossref] [PubMed]
  7. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, Opt. Lett. 23, 228 (1998).
  8. A. M. Rollins and J. A. Izatt, Opt. Lett. 24, 1484 (1999).
  9. We are grateful to a reviewer of this manuscript for this suggestion.
  10. A. M. Rollins, M. D. Kulkarni, R. Ung-Arunyawee, and J. A. Izatt, Opt. Express 3, 219 (1998), http://www.opticsexpress.org .
    [Crossref] [PubMed]

2000 (1)

1999 (2)

1998 (4)

1997 (1)

1992 (1)

Chen, Z.

Colston, B. W.

Da Silva, L. B.

De Boer, J.

de Boer, J. F.

Everett, M. J.

Fujimoto, J. G.

Hee, M. R.

Huang, D.

Izatt, J. A.

Kulkarni, M. D.

Maitland, D. J.

Malekafzali, A.

Milner, T. E.

Nelson, J. S.

Park, B. H.

Rollins, A. M.

Saxer, C. E.

Schoenenberger, K.

Srinivas, S.

Swanson, E. A.

Ung-Arunyawee, R.

van Gemert, M. J. C.

Zhao, Y.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the PS-OCT system: PBS, polarizing beam splitter passing vertically polarized light; AWP, addressable wave plate with fast axis oriented at 45°; 50/50 BS, 50/50 beam splitter.

Fig. 2
Fig. 2

(a) Measured versus actual retardation in a calibrated test plate. The half-circles represent the test plate retardation settings in degrees, and the data points represent the measured retardation settings. The angle from the vertical represents the fast-axis setting, from 0° to 180°. (b) Measured versus predicted fast axis in the calibration test sample. The horizontal axis represents the fast axis. The solid lines represent the test plate fast-axis settings, and the points represent the measured fast-axis orientation. The fast-axis readings represent averaged acquisitions; each reading corresponds to two possible fast-axis locations.

Fig. 3
Fig. 3

PS-OCT images of ex vivo Xenopus laevis leg muscle. The image dimensions are 6  mm wide by 4.5  mm deep. Left, optical power reflectivity image plotted on a logorithmic scale. Right, combined retardation–optical power image. On the hue-saturation-value color scale, reflected optical power is displayed in saturation and value, and retardance is displayed in hue. The hue color scale, representing net retardance of 0° in red and of 180° in green, is displayed at the right.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.