Abstract

We report a method for extracting the birefringence properties of biological samples with micrometer-scale resolution in three dimensions, using a new form of polarization-sensitive optical coherence tomography. The method measures net retardance, net fast axis, and total reflectivity as a function of depth into the sample. Polarization sensing is accomplished by illumination of the sample with at least three separate polarization states during consecutive acquisitions of the same pixel, A scan, or B scan. The method can be implemented by use of non-polarization-maintaining fiber and a single detector. In a calibration test of the system, net retardance was measured with an average error of 7.5° (standard deviation 2.2°) over the retardance range 0° to 180°, and a fast axis with average error of 4.8° over the range 0° to 180°.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers

Jun Zhang, Shuguang Guo, Woonggyu Jung, J. Stuart Nelson, and Zhongping Chen
Opt. Express 11(24) 3262-3270 (2003)

Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method

Masahiro Yamanari, Shuichi Makita, Violeta Dimitrova Madjarova, Toyohiko Yatagai, and Yoshiaki Yasuno
Opt. Express 14(14) 6502-6515 (2006)

Passive optical module for polarization-sensitive optical coherence tomography systems

Sylvain Rivet, Manuel J. Marques, Adrian Bradu, and Adrian Podoleanu
Opt. Express 25(13) 14533-14544 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription