Abstract

Adiabatically tapered holey fibers are shown to be potentially useful for guided-wave spot-size and numerical-aperture conversion. Conditions for adiabaticity and design guidelines are provided in terms of the effective-index model. We also present finite-difference time-domain calculations of downtapered holey fiber, showing that large spot-size conversion factors are obtainable with minimal loss by use of short, optimally shaped tapers.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. T. M. Munro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
    [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, J. Opt. Soc. Am. A 15, 748 (1998).
    [CrossRef]
  5. K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
    [CrossRef]
  6. N. Amitay, H. M. Presby, F. V. Dimarcello, and K. T. Nelson, J. Lightwave Technol. 5, 70 (1987).
    [CrossRef]
  7. H. M. Presby and A. Benner, Electron. Lett. 24, 1162 (1988).
    [CrossRef]
  8. A. Taflov, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  9. A. J. Ward and J. B. Pendry, Comput. Phys. Commun. 128, 590 (2000).
    [CrossRef]
  10. J. T. Lizier and G. E. Town, paper TueG5 presented at the Optoelectronics and Communications Conference, Sydney, Australia , July 1–5, 2001.
  11. J. D. Love, Electron. Lett. 23, 993 (1987).
    [CrossRef]
  12. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
    [CrossRef]
  13. M. J. Gander, R. McBride, J. C. C. Jones, T. A. Birks, J. C. Knight, P. St. J. Russell, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, Opt. Lett. 24, 1017 (1999).
    [CrossRef]
  14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2000).
    [CrossRef]
  15. L. B. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New York, 1990).

2000 (3)

A. J. Ward and J. B. Pendry, Comput. Phys. Commun. 128, 590 (2000).
[CrossRef]

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

1996 (1)

1988 (1)

H. M. Presby and A. Benner, Electron. Lett. 24, 1162 (1988).
[CrossRef]

1987 (2)

N. Amitay, H. M. Presby, F. V. Dimarcello, and K. T. Nelson, J. Lightwave Technol. 5, 70 (1987).
[CrossRef]

J. D. Love, Electron. Lett. 23, 993 (1987).
[CrossRef]

1986 (1)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
[CrossRef]

Amitay, N.

N. Amitay, H. M. Presby, F. V. Dimarcello, and K. T. Nelson, J. Lightwave Technol. 5, 70 (1987).
[CrossRef]

Atkin, D. M.

Benner, A.

H. M. Presby and A. Benner, Electron. Lett. 24, 1162 (1988).
[CrossRef]

Bennett, P. J.

Birks, T. A.

Blanchard, P. M.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Broderick, N. G. R.

Burnett, J. G.

de Sandro, J. P.

Dimarcello, F. V.

N. Amitay, H. M. Presby, F. V. Dimarcello, and K. T. Nelson, J. Lightwave Technol. 5, 70 (1987).
[CrossRef]

Gander, M. J.

Greenaway, A. H.

Hussey, C. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
[CrossRef]

Jedrzejewski, K. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
[CrossRef]

Jeunhomme, L. B.

L. B. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New York, 1990).

Jones, J. C. C.

Knight, J. C.

Lizier, J. T.

J. T. Lizier and G. E. Town, paper TueG5 presented at the Optoelectronics and Communications Conference, Sydney, Australia , July 1–5, 2001.

Love, J. D.

J. D. Love, Electron. Lett. 23, 993 (1987).
[CrossRef]

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Martinez, F.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
[CrossRef]

McBride, R.

Minelly, J. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
[CrossRef]

Munro, T. M.

Nelson, K. T.

N. Amitay, H. M. Presby, F. V. Dimarcello, and K. T. Nelson, J. Lightwave Technol. 5, 70 (1987).
[CrossRef]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Payne, F. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
[CrossRef]

Pendry, J. B.

A. J. Ward and J. B. Pendry, Comput. Phys. Commun. 128, 590 (2000).
[CrossRef]

Presby, H. M.

H. M. Presby and A. Benner, Electron. Lett. 24, 1162 (1988).
[CrossRef]

N. Amitay, H. M. Presby, F. V. Dimarcello, and K. T. Nelson, J. Lightwave Technol. 5, 70 (1987).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

St. J. Russell, P.

Stentz, A. J.

Taflov, A.

A. Taflov, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Town, G. E.

J. T. Lizier and G. E. Town, paper TueG5 presented at the Optoelectronics and Communications Conference, Sydney, Australia , July 1–5, 2001.

Ward, A. J.

A. J. Ward and J. B. Pendry, Comput. Phys. Commun. 128, 590 (2000).
[CrossRef]

Windeler, R. S.

Comput. Phys. Commun. (1)

A. J. Ward and J. B. Pendry, Comput. Phys. Commun. 128, 590 (2000).
[CrossRef]

Electron Lett. (1)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, Electron Lett. 22, 105 (1986).
[CrossRef]

Electron. Lett. (2)

H. M. Presby and A. Benner, Electron. Lett. 24, 1162 (1988).
[CrossRef]

J. D. Love, Electron. Lett. 23, 993 (1987).
[CrossRef]

J. Lightwave Technol. (2)

N. Amitay, H. M. Presby, F. V. Dimarcello, and K. T. Nelson, J. Lightwave Technol. 5, 70 (1987).
[CrossRef]

T. M. Munro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, Opt. Fiber Technol. 6, 181 (2000).
[CrossRef]

Opt. Lett. (4)

Other (3)

A. Taflov, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

L. B. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New York, 1990).

J. T. Lizier and G. E. Town, paper TueG5 presented at the Optoelectronics and Communications Conference, Sydney, Australia , July 1–5, 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the tapered holey fiber, scaled in size by D1:D2 over length L.

Fig. 2
Fig. 2

Optimal adiabatic downtapered HF profile with α=1.5, scaled in size from Λ=6.4 μm to Λ=0.8 μm over Λ=50 μm, designed by the method described in the text.

Fig. 3
Fig. 3

(a) Incident intensity (launched from a SIF) in a HF with Λ=6.4 μm and (b) output intensity after the 50μm adiabatic taper shown in Fig.  2. The intensity scales are normalized to peak input intensity, and the spatial scales show computational grid coordinates, spanning a window of 12.8 μm by 11.08 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ0=λlnVeffπρ,
Veff=2πρ/λnco2-ncl2,

Metrics