Abstract

We present a novel device based on four orthogonal reflections that displaces an optical beam while preserving the state of polarization. The principle of operation is the overall compensation of the phase shifts that s and p polarization components of the light acquire at each reflection. This compensation, which relies on the use of four identical reflectors, is independent of the actual values of the s and p reflection coefficients and thus is independent of the wavelength. Measurements of the polarization-preserving properties with different sets of reflectors and tolerances to misalignments are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cojocaru, Appl. Opt. 31, 4340 (1992).
    [CrossRef] [PubMed]
  2. Z. P. Wang, W. M. Sun, S. L. Ruan, C. Kang, Z. J. Huang, and S. Q. Zhang, Appl. Opt. 36, 2802 (1997).
    [CrossRef] [PubMed]
  3. R. M. A. Azzam and M. Emdadur Rahman Khan, Appl. Opt. 21, 3314 (1982).
    [CrossRef] [PubMed]
  4. R. M. Azzam, Opt. Lett. 7, 80 (1982).
    [CrossRef] [PubMed]
  5. R. M. A. Azzam, J. Opt. Soc. Am. A 1, 699 (1984).
    [CrossRef]
  6. E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, Opt. Commun. 171, 7 (1999).
    [CrossRef]
  7. E. J. Galvez and C. D. Holmes, J. Opt. Soc. Am. A 16, 1981 (1999).
    [CrossRef]

1999 (2)

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, Opt. Commun. 171, 7 (1999).
[CrossRef]

E. J. Galvez and C. D. Holmes, J. Opt. Soc. Am. A 16, 1981 (1999).
[CrossRef]

1997 (1)

1992 (1)

1984 (1)

1982 (2)

Azzam, R. M.

Azzam, R. M. A.

Cheyne, M. R.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, Opt. Commun. 171, 7 (1999).
[CrossRef]

Cojocaru, E.

Emdadur Rahman Khan, M.

Galvez, E. J.

E. J. Galvez and C. D. Holmes, J. Opt. Soc. Am. A 16, 1981 (1999).
[CrossRef]

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, Opt. Commun. 171, 7 (1999).
[CrossRef]

Holmes, C. D.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, Opt. Commun. 171, 7 (1999).
[CrossRef]

E. J. Galvez and C. D. Holmes, J. Opt. Soc. Am. A 16, 1981 (1999).
[CrossRef]

Huang, Z. J.

Kang, C.

Ruan, S. L.

Stewart, J. B.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, Opt. Commun. 171, 7 (1999).
[CrossRef]

Sun, W. M.

Sztul, H. I.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, Opt. Commun. 171, 7 (1999).
[CrossRef]

Wang, Z. P.

Zhang, S. Q.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagrams of the (a) mirror-based and (b) prism-based CPS beam displacers.

Fig. 2
Fig. 2

Ellipticity acquired by a linearly polarized beam of wavelength λ in a conventional two-mirror beam displacer that used aluminum mirrors (squares) and in a prism-based CPS beam displacer (circles).

Fig. 3
Fig. 3

Ellipticity acquired by a 632.8-nm linearly polarized beam as a function of the misalignment of the CPS beam displacer relative to the light beam. The measurements correspond to the tilting of the beam displacer about the x axis shown in Fig.  1.

Metrics