Abstract

The angle-impact Wigner function for highly convergent three-dimensional scalar wave fields is derived directly by use of the three-dimensional generalized optical transfer function rather than from a six-dimensional Wigner function. The angle-impact Wigner function is a real four-dimensional function from which the intensity at any point in space is readily determined.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. Wolf, M. A. Alonso, and G. W. Forbes, J. Opt. Soc. Am. A 16, 2476 (1999).
    [CrossRef]
  2. C. W. McCutchen, J. Opt. Soc. Am. 54, 240 (1964).
  3. L. Mertz, Transformations in Optics (Wiley, New York, 1965).
  4. B. R. Frieden, J. Opt. Soc. Am. 57, 56 (1967).
  5. C. J. R. Sheppard, M. Gu, Y. Kawata, and S. Kawata, J. Opt. Soc. Am. A 11, 593 (1994).
    [CrossRef]
  6. A. Papoulis, J. Opt. Soc. Am. 64, 779 (1974).
  7. T. Alieva and M. J. Bastiaans, J. Opt. Soc. Am. A 17, 2324 (2000).
    [CrossRef]
  8. R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  9. K. G. Larkin and C. J. R. Sheppard, J. Opt. Soc. Am. A 16, 1838 (1999).
    [CrossRef]
  10. C. J. R. Sheppard and H. J. Matthews, J. Opt. Soc. Am. A 4, 1354 (1987).
    [CrossRef]

2000

1999

1994

1987

1974

1967

1964

Alieva, T.

Alonso, M. A.

Bastiaans, M. J.

Bracewell, R. N.

R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, Englewood Cliffs, N.J., 1995).

Forbes, G. W.

Frieden, B. R.

Gu, M.

Kawata, S.

Kawata, Y.

Larkin, K. G.

Matthews, H. J.

McCutchen, C. W.

Mertz, L.

L. Mertz, Transformations in Optics (Wiley, New York, 1965).

Papoulis, A.

Sheppard, C. J. R.

Wolf, K. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics