Abstract

We present a normalized Born expansion that facilitates fluorescence reconstructions in turbid, tissuelike media. The algorithm can be particularly useful for tissue investigations of fluorochrome distributionin vivo, since it does not require absolute photon-field measurements or measurements before contrast-agent administration. This unique advantage can be achieved only in fluorescence mode. We used this algorithm to three-dimensionally image and quantify an indocyanine fluorochrome phantom, using a novel fluorescence tomographic imager developed for animals.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
    [CrossRef] [PubMed]
  2. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Invest. Radiol. 35, 479 (2000).
    [CrossRef] [PubMed]
  3. R. Weissleder, Ch. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol. 17, 375 (1999).
    [CrossRef] [PubMed]
  4. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, Appl. Opt. 36, 2260 (1997).
    [CrossRef] [PubMed]
  5. H. Jiang, Appl. Opt. 37, 5337 (1998).
    [CrossRef]
  6. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, Opt. Lett. 21, 158 (1996).
    [CrossRef] [PubMed]
  7. J. B. Fishkin and E. Gratton, J. Opt. Soc. Am. A 10, 127 (1993).
    [CrossRef] [PubMed]
  8. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Appl. Opt. 35, 3746 (1996).
    [CrossRef] [PubMed]
  9. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).
  10. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
    [CrossRef] [PubMed]
  11. V. Ntziachristos, A. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Medical Imaging (to be published); published in part in Ref. 12.
  12. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, in Biomedical Optics: Advances in Optical Imaging, Photon Migration, and Tissue Optics (Optical Society of America, Washington, D.C., 1999), pp. 211–213.
  13. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Proc. National Acad. Sci. USA 97, 2767 (2000).
    [CrossRef]
  14. A. Kienle and M. S. Patterson, J. Opt. Soc. Am. A 14, 246 (1997).
    [CrossRef]

2000

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Invest. Radiol. 35, 479 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Proc. National Acad. Sci. USA 97, 2767 (2000).
[CrossRef]

1999

R. Weissleder, Ch. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol. 17, 375 (1999).
[CrossRef] [PubMed]

1998

1997

1996

1995

1993

Achilefu, S.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Invest. Radiol. 35, 479 (2000).
[CrossRef] [PubMed]

Becker, A.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

Boas, D. A.

Bogdanov, Jr., A.

R. Weissleder, Ch. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol. 17, 375 (1999).
[CrossRef] [PubMed]

Bugaj, J. E.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Invest. Radiol. 35, 479 (2000).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Proc. National Acad. Sci. USA 97, 2767 (2000).
[CrossRef]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, Opt. Lett. 21, 158 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Appl. Opt. 35, 3746 (1996).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, in Biomedical Optics: Advances in Optical Imaging, Photon Migration, and Tissue Optics (Optical Society of America, Washington, D.C., 1999), pp. 211–213.

V. Ntziachristos, A. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Medical Imaging (to be published); published in part in Ref. 12.

Chen, A. U.

Dorshow, R. B.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Invest. Radiol. 35, 479 (2000).
[CrossRef] [PubMed]

Fishkin, J. B.

Gratton, E.

Hielscher, A.

V. Ntziachristos, A. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Medical Imaging (to be published); published in part in Ref. 12.

Hielscher, A. H.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, in Biomedical Optics: Advances in Optical Imaging, Photon Migration, and Tissue Optics (Optical Society of America, Washington, D.C., 1999), pp. 211–213.

Jiang, H.

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

Kienle, A.

A. Kienle and M. S. Patterson, J. Opt. Soc. Am. A 14, 246 (1997).
[CrossRef]

Li, X. D.

Licha, K.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

Mahmood, U.

R. Weissleder, Ch. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol. 17, 375 (1999).
[CrossRef] [PubMed]

Ntziachristos, V.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Proc. National Acad. Sci. USA 97, 2767 (2000).
[CrossRef]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, in Biomedical Optics: Advances in Optical Imaging, Photon Migration, and Tissue Optics (Optical Society of America, Washington, D.C., 1999), pp. 211–213.

V. Ntziachristos, A. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Medical Imaging (to be published); published in part in Ref. 12.

O'Leary, M. A.

Paithankar, D. Y.

Patterson, M. S.

Pogue, B. W.

Rajagopalan, R.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Invest. Radiol. 35, 479 (2000).
[CrossRef] [PubMed]

Riefke, B.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Proc. National Acad. Sci. USA 97, 2767 (2000).
[CrossRef]

Semmler, W.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

Tung, Ch.

R. Weissleder, Ch. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol. 17, 375 (1999).
[CrossRef] [PubMed]

Weissleder, R.

R. Weissleder, Ch. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol. 17, 375 (1999).
[CrossRef] [PubMed]

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Proc. National Acad. Sci. USA 97, 2767 (2000).
[CrossRef]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Appl. Opt. 35, 3746 (1996).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, Opt. Lett. 21, 158 (1996).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, in Biomedical Optics: Advances in Optical Imaging, Photon Migration, and Tissue Optics (Optical Society of America, Washington, D.C., 1999), pp. 211–213.

V. Ntziachristos, A. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Medical Imaging (to be published); published in part in Ref. 12.

Appl. Opt.

IEEE Trans. Medical Imaging

V. Ntziachristos, A. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Medical Imaging (to be published); published in part in Ref. 12.

Invest. Radiol.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Invest. Radiol. 35, 479 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

A. Kienle and M. S. Patterson, J. Opt. Soc. Am. A 14, 246 (1997).
[CrossRef]

J. B. Fishkin and E. Gratton, J. Opt. Soc. Am. A 10, 127 (1993).
[CrossRef] [PubMed]

Nat. Biotechnol.

R. Weissleder, Ch. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol. 17, 375 (1999).
[CrossRef] [PubMed]

Opt. Lett.

Photochem. Photobiol.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, Photochem. Photobiol. 72, 392 (2000).
[CrossRef] [PubMed]

Proc. National Acad. Sci. USA

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Proc. National Acad. Sci. USA 97, 2767 (2000).
[CrossRef]

Other

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, in Biomedical Optics: Advances in Optical Imaging, Photon Migration, and Tissue Optics (Optical Society of America, Washington, D.C., 1999), pp. 211–213.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Optical bore, made of Delrin acetal resin. The fibers pass through the Delrin material and come face to face with the inner walls. The tubes immersed in the Intralipid solution are shown by dotted outlines. (b) Two-dimensional view of (a).

Fig. 2
Fig. 2

Fluorescence reconstruction of the experimental setup of Fig.  1 with three layers along z. The fluorescence measurements are normalized by use of Uinc, i.e., the incident field measured when the two absorbing–fluorescent objects were no immersed.

Fig. 3
Fig. 3

Fluorescence reconstruction of the experimental setup of Fig.  1(b) with three layers along z. The fluorescence measurements are normalized by use of Uinc, i.e., the incident field measured with the two absorbing–fluorescent objects immersed.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Uincrs,rd=QEλ1·Θsrs·Θdrd·U0rs-rd,kλ1,
Uflrs,rd=d3r·Θsrs·Θf·QEλ2·Θdrd·U0rs-r,kλ1·nr1-iωτr·νDλ2·Grd-r,kλ2,
UnBrs,rd=1Θf·Uflrs,rdUincrs,rd·QEλ1QEλ2=1U0rs,rd,kλ1·d3r·(U0rs,r,kλ1·nr1-iωτrνDλ2Grd-r,kλ2.

Metrics