Abstract

We present a theory of the magnetic field enhancement of terahertz (THz) emission from photogenerated carriers in the surface depletion region of a semiconductor. A combination of the Drude–Lorentz model for the carrier dynamics with an appropriate solution of the radiation problem is sufficient to explain the strong B-field enhancement in THz radiation that has been observed experimentally. The effect arises primarily from the increased radiation efficiency of transient currents flowing in the plane of the surface. The model provides quantitative agreement with experiment for the pronounced angular dependence of the enhancement and predicts the correct trend for the enhancement in a variety of materials.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing

Aniruddha S. Weling and Tony F. Heinz
J. Opt. Soc. Am. B 16(9) 1455-1467 (1999)

Terahertz emission from electric field singularities in biased semiconductors

I. Brener, M. C. Nuss, D. Dykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, and K. West
Opt. Lett. 21(23) 1924-1926 (1996)

Terahertz emission from lateral photo-Dember currents

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M.B. Johnston, M. Fischer, J. Faist, and T. Dekorsy
Opt. Express 18(5) 4939-4947 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription