Abstract

A silicon micromachined membrane deformable mirror with a diameter of 10  mm, reflectivity of better than 99.8%, and a surface deflection range of 3 μm has been used for intracavity control of an industrial 200-W cw Nd:YAG laser. When it was placed in the resonator, the mirror demonstrated continuous (more than 40-h) stable operation under an 550W cw optical load, with beam diameters in the range 3–6  mm. Periodic modulation of the curvature of the deformable mirror with a frequency of 250  Hz produced quick switching between stable and unstable resonator configurations, which resulted in pulse-period Q-switched generation with average power in the range 50–200  W, modulation depth from 95% to 10%, and an M2 parameter of 6.5 to 30.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. J. Greiner and H. H. Klingenberg, Opt. Lett. 19, 1207 (1994).
    [CrossRef] [PubMed]
  2. T. Yu. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, Appl. Opt. 35, 2554 (1996).
    [CrossRef] [PubMed]
  3. S. A. Chetkin and G. Vdovin, Opt. Commun. 100, 159 (1993).
    [CrossRef]
  4. G. V. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
    [CrossRef]
  5. F. Druon, G. Cheraux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J. C. Chanteloup, and G. Vdovin, Opt. Lett. 23, 1043 (1998).
    [CrossRef]
  6. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
    [CrossRef] [PubMed]
  7. G. V. Vdovin, N. Kugler, and M. Schacht, Proc. SPIE 3762, 58 (1999).
    [CrossRef]
  8. A. Siegman, Lasers (University Science, Mill Valley, Calif., 1987), p. 818.
  9. G. Vdovin, Opt. Commun. 140, 187 (1997).
    [CrossRef]

2000 (1)

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

1999 (1)

G. V. Vdovin, N. Kugler, and M. Schacht, Proc. SPIE 3762, 58 (1999).
[CrossRef]

1998 (1)

1997 (2)

G. Vdovin, Opt. Commun. 140, 187 (1997).
[CrossRef]

G. V. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

S. A. Chetkin and G. Vdovin, Opt. Commun. 100, 159 (1993).
[CrossRef]

Backus, S.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Bartels, R.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Chanteloup, J. C.

Cheraux, G.

Cherezova, T. Yu.

Chetkin, S. A.

S. A. Chetkin and G. Vdovin, Opt. Commun. 100, 159 (1993).
[CrossRef]

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Druon, F.

Faure, J.

Greiner, U. J.

Kapteyn, H. C.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Kaptsov, L. N.

Klingenberg, H. H.

Kudryashov, A. V.

Kugler, N.

G. V. Vdovin, N. Kugler, and M. Schacht, Proc. SPIE 3762, 58 (1999).
[CrossRef]

Maksimchuk, A.

Middelhoek, S.

G. V. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Mourou, G.

Murnane, M. M.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Nantel, M.

Nees, J.

Sarro, P. M.

G. V. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Schacht, M.

G. V. Vdovin, N. Kugler, and M. Schacht, Proc. SPIE 3762, 58 (1999).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1987), p. 818.

Vdovin, G.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

F. Druon, G. Cheraux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J. C. Chanteloup, and G. Vdovin, Opt. Lett. 23, 1043 (1998).
[CrossRef]

G. Vdovin, Opt. Commun. 140, 187 (1997).
[CrossRef]

S. A. Chetkin and G. Vdovin, Opt. Commun. 100, 159 (1993).
[CrossRef]

Vdovin, G. V.

G. V. Vdovin, N. Kugler, and M. Schacht, Proc. SPIE 3762, 58 (1999).
[CrossRef]

G. V. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Zeek, E.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Nature (1)

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
[CrossRef] [PubMed]

Opt. Commun. (2)

G. Vdovin, Opt. Commun. 140, 187 (1997).
[CrossRef]

S. A. Chetkin and G. Vdovin, Opt. Commun. 100, 159 (1993).
[CrossRef]

Opt. Eng. (1)

G. V. Vdovin, S. Middelhoek, and P. M. Sarro, Opt. Eng. 36, 1382 (1997).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

G. V. Vdovin, N. Kugler, and M. Schacht, Proc. SPIE 3762, 58 (1999).
[CrossRef]

Other (1)

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1987), p. 818.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic section of a high-reflectivity MMDM (top, thickness of layers not to scale) and a 15-mm MMDM coated with a metal–dielectric high-reflectivity coating (bottom).

Fig. 2
Fig. 2

Two solid-state laser resonator configurations, corresponding to transitions to an unstable positive branch (top) and an unstable negative branch (bottom) configuration.

Fig. 3
Fig. 3

ROC of the deformable mirror when it is in transition from a stable to an unstable configuration as a function of the focal length of the thermal lens for a resonator with L1=0.45 m and L2=0.25 m.

Fig. 4
Fig. 4

Oscillogram of the driving voltage (bottom) and the laser output power (top) for a modulation frequency of 250  Hz and modulation of focusing power of 0.5  D, corresponding to 95% of output-power modulation depth. The top oscillogram shows how the output power changes during one full period of modulation, and the bottom shows a more-detailed structure of a single Q-switched pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t=4Pi1-Rdaks+dskakaπr4rks+daks+dska,
R=L2-F,
R=FL1+L2-L1L2F-L1.

Metrics