Abstract

We propose the use of egg-shaped asymmetric resonant cavities (ARCs), each of which consists of a half-circular part and a half-deformed part, as promising candidates in obtaining desirable whispering-gallery-mode resonances. According to numerical analysis based on a ray-optics model, more than an order-of-magnitude higher Q and more-concentrated emission from the tip of the egg region were obtained for egg-shaped ARCs than for the previously studied quadrupolar ARCs.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. U. Nöckel, A. D. Stone, and R. K. Chang, Opt. Lett. 19, 1693 (1994).
    [CrossRef]
  2. A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
    [CrossRef] [PubMed]
  3. J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 389–426.
    [CrossRef]
  4. J. U. Nöckel, A. D. Stone, G. Chen, H. L. Grossman, and R. K. Chang, Opt. Lett. 21, 1609 (1996).
    [CrossRef]
  5. J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
    [CrossRef]
  6. S. Chang, J. U. Nöckel, R. K. Chang, and A. D. Stone, J. Opt. Soc. Am. B 17, 1828 (2000).
    [CrossRef]
  7. M. Robnik and M. V. Berry, J. Phys. A 18, 1361 (1985).
    [CrossRef]

2000

1997

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

1996

1995

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef] [PubMed]

1994

1985

M. Robnik and M. V. Berry, J. Phys. A 18, 1361 (1985).
[CrossRef]

Berry, M. V.

M. Robnik and M. V. Berry, J. Phys. A 18, 1361 (1985).
[CrossRef]

Chang, R. K.

Chang, S.

Chen, G.

J. U. Nöckel, A. D. Stone, G. Chen, H. L. Grossman, and R. K. Chang, Opt. Lett. 21, 1609 (1996).
[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef] [PubMed]

Grossman, H. L.

Mekis, A.

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef] [PubMed]

Nöckel, J. U.

S. Chang, J. U. Nöckel, R. K. Chang, and A. D. Stone, J. Opt. Soc. Am. B 17, 1828 (2000).
[CrossRef]

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

J. U. Nöckel, A. D. Stone, G. Chen, H. L. Grossman, and R. K. Chang, Opt. Lett. 21, 1609 (1996).
[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef] [PubMed]

J. U. Nöckel, A. D. Stone, and R. K. Chang, Opt. Lett. 19, 1693 (1994).
[CrossRef]

J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 389–426.
[CrossRef]

Robnik, M.

M. Robnik and M. V. Berry, J. Phys. A 18, 1361 (1985).
[CrossRef]

Stone, A. D.

S. Chang, J. U. Nöckel, R. K. Chang, and A. D. Stone, J. Opt. Soc. Am. B 17, 1828 (2000).
[CrossRef]

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

J. U. Nöckel, A. D. Stone, G. Chen, H. L. Grossman, and R. K. Chang, Opt. Lett. 21, 1609 (1996).
[CrossRef]

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef] [PubMed]

J. U. Nöckel, A. D. Stone, and R. K. Chang, Opt. Lett. 19, 1693 (1994).
[CrossRef]

J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 389–426.
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. A

M. Robnik and M. V. Berry, J. Phys. A 18, 1361 (1985).
[CrossRef]

Nature

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef] [PubMed]

Other

J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 389–426.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Q - 1 and emission rate versus deformation ϵ for a half-elliptic egg-shaped ARC. Refractive index, n = 2 ; all rays start at sin α 0 = 0.80 . We assume that nkR = 100 , where R is the undeformed radius of the cavity.

Fig. 2
Fig. 2

Q versus emission rate for quadrupolar and egg-shaped ARCs. Q and the emission rate are both calculated as functions of ϵ until the emission rate is near unity. The high-emission-rate region is shown.

Fig. 3
Fig. 3

Near-field and far-field emission directionality from (a) quadrupolar, (b) half-quadrupolar egg-shaped, and (c) half-elliptic egg-shaped ARCs. Deformation of each ARC is chosen such that all emission rates are approximately 0.80: (a) ϵ = 1.21 , (b) ϵ = 1.11 , (c) ϵ = 1.152 .

Fig. 4
Fig. 4

Poincaré SOS for a half-elliptic egg-shaped ARC. The deformation is (a) ϵ = 1.01 , (b) ϵ = 1.10 , (c) ϵ = 1.20 .

Tables (1)

Tables Icon

Table 1 Deformations of Egg-Shaped ARCs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin α θ = 1 - 1 - S 2 κ θ 2 / 3 1 / 2 ,

Metrics