Abstract

La/B4C multilayers have been fabricated by magnetron sputtering for use as x-ray mirrors at energies below 190  eV, particularly for detection of boron K and α x rays at 183  eV, their performance has been compared with that of Mo/B4C multilayers, which are currently the best-performing multilayers for this energy range. Transmission electron microscopy and synchrotron soft-x-ray reflectometry were used to study the structural quality of the multilayers and their performance as x-ray mirrors. The results show a significant improvement of the peak reflectivity and the spectral purity, indicating that La/B4C has a high potential to replace Mo/B4C in many x-ray optical applications below 190  eV.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).
  2. P. Ricardo, J. Wiesmann, C. Nowak, C. Michaelsen, and R. Bormann, “Improved analyzer multilayers for aluminum and boron detection with x-ray fluorescence,” Appl. Opt. (to be published).
  3. http://www-hasylab.desy.de/facility/experimental_stations/stations/G1_XUV_Reflectometer_BUMBLE_BEE.htm .
  4. http://www-cxro.lbl.gov:80/optical_constants .
  5. M. Schuster, L. Müller, K. E. Mauser, and R. Straub, Thin Solid Films 157, 325 (1988).
    [CrossRef]
  6. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
    [CrossRef]
  7. http://physics.nist.gov/PhysRefData/FFast/Text/cover.html .

2000 (1)

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

1988 (1)

M. Schuster, L. Müller, K. E. Mauser, and R. Straub, Thin Solid Films 157, 325 (1988).
[CrossRef]

Anders, D.

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

Bormann, R.

P. Ricardo, J. Wiesmann, C. Nowak, C. Michaelsen, and R. Bormann, “Improved analyzer multilayers for aluminum and boron detection with x-ray fluorescence,” Appl. Opt. (to be published).

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

Göbel, H.

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

Mauser, K. E.

M. Schuster, L. Müller, K. E. Mauser, and R. Straub, Thin Solid Films 157, 325 (1988).
[CrossRef]

Michaelsen, C.

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

P. Ricardo, J. Wiesmann, C. Nowak, C. Michaelsen, and R. Bormann, “Improved analyzer multilayers for aluminum and boron detection with x-ray fluorescence,” Appl. Opt. (to be published).

Müller, L.

M. Schuster, L. Müller, K. E. Mauser, and R. Straub, Thin Solid Films 157, 325 (1988).
[CrossRef]

Nowak, C.

P. Ricardo, J. Wiesmann, C. Nowak, C. Michaelsen, and R. Bormann, “Improved analyzer multilayers for aluminum and boron detection with x-ray fluorescence,” Appl. Opt. (to be published).

Ricardo, P.

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

P. Ricardo, J. Wiesmann, C. Nowak, C. Michaelsen, and R. Bormann, “Improved analyzer multilayers for aluminum and boron detection with x-ray fluorescence,” Appl. Opt. (to be published).

Schilling, J.

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

Schuster, M.

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

M. Schuster, L. Müller, K. E. Mauser, and R. Straub, Thin Solid Films 157, 325 (1988).
[CrossRef]

Straub, R.

M. Schuster, L. Müller, K. E. Mauser, and R. Straub, Thin Solid Films 157, 325 (1988).
[CrossRef]

Wiesmann, J.

P. Ricardo, J. Wiesmann, C. Nowak, C. Michaelsen, and R. Bormann, “Improved analyzer multilayers for aluminum and boron detection with x-ray fluorescence,” Appl. Opt. (to be published).

Adv. X-Ray Anal. (1)

C. Michaelsen, P. Ricardo, D. Anders, M. Schuster, J. Schilling, and H. Göbel, Adv. X-Ray Anal. 42, 308 (2000).

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

Thin Solid Films (1)

M. Schuster, L. Müller, K. E. Mauser, and R. Straub, Thin Solid Films 157, 325 (1988).
[CrossRef]

Other (4)

http://physics.nist.gov/PhysRefData/FFast/Text/cover.html .

P. Ricardo, J. Wiesmann, C. Nowak, C. Michaelsen, and R. Bormann, “Improved analyzer multilayers for aluminum and boron detection with x-ray fluorescence,” Appl. Opt. (to be published).

http://www-hasylab.desy.de/facility/experimental_stations/stations/G1_XUV_Reflectometer_BUMBLE_BEE.htm .

http://www-cxro.lbl.gov:80/optical_constants .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross-section transmission electron micrograph of a La/B4C multilayer on silicon, comprising 50 layer pairs with a period of 10  nm. La layers appear dark, and B4C layers appear bright. The inset shows an image at higher magnification. The image is a bright-field micrograph with a Si[110] zone axis orientation.

Fig. 2
Fig. 2

Experimental reflectivities of La/B4C and Mo/B4C multilayer films at 183  eV versus incidence angle. Both multilayers had 40 pairs with a period of 8.5  nm (4.25-nm La/4.25nm B4C and 3.4nm Mo/5.1nm B4C).

Fig. 3
Fig. 3

Experimental reflectivities of the multilayers of Fig.  2 at 90  eV. As a guide to the eye, the vertical line at 24.5° indicates the angle at which the reflectivity for 183  eV was maximal for these multilayers.

Fig. 4
Fig. 4

Experimental reflectivities of the multilayers of Fig.  2 at 525  eV.

Fig. 5
Fig. 5

Experimental reflectivities of the multilayers of Fig.  2 versus energy at a fixed angle of 24.5°.

Metrics