Abstract

Long-period gratings have been made in nonphotosensitive optical fibers by irradiation of the core of a fiber with a focused beam of high-energy protons. The irradiated fibers exhibit relatively low loss, even before thermal annealing, and possess strongly wavelength-dependent transmission. The absence of a mask provides the opportunity to tailor the grating to a desired profile, and a variety of grating profiles were explored. The profile most resembling a sinusoid was found to produce the cleanest transmission spectra.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Canning and D. Moss, Opt. Lett. 23, 174 (1998).
    [CrossRef]
  2. M. C. Farries, C. M. Ragdale, and D. C. Reid, Electron. Lett. 28, 487 (1992).
    [CrossRef]
  3. Y.-J. Rao, Meas. Sci. Technol. 8, 355 (1997).
    [CrossRef]
  4. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  5. G. D. Maxwell and B. J. Ainslie, Electron. Lett. 30, 95 (1995).
    [CrossRef]
  6. I. K. Hwang, S. H. Yun, and B. Y. Kim, Opt. Lett. 24, 1263 (1999).
    [CrossRef]
  7. C. D. Poole, H. M. Presby, and J. P. Meester, Electron. Lett. 30, 1437 (1994).
    [CrossRef]
  8. M. Fujimaki, Y. Ohki, J. L. Brebner, and S. Roorda, Opt. Lett. 25, 88 (2000).
    [CrossRef]
  9. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994), p. 233.
  10. M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, J. Appl. Phys. 87, 8429 (2000).
    [CrossRef]
  11. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Meth. 174, 257 (1980).
    [CrossRef]
  12. M. L. von Bibra and A. Roberts, J. Lightwave Technol. 15, 1695 (1997).
    [CrossRef]
  13. V. Grubsky, A. Skorucak, D. S. Starodubov, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 87 (1999).
    [CrossRef]
  14. E. P. EerNisse and C. B. Norris, J. Appl. Phys. 45, 5196 (1974).
    [CrossRef]
  15. A. Roberts and M. L. von Bibra, J. Lightwave Technol. 14, 2554 (1996).
    [CrossRef]
  16. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996), p. 247.

2000 (2)

M. Fujimaki, Y. Ohki, J. L. Brebner, and S. Roorda, Opt. Lett. 25, 88 (2000).
[CrossRef]

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, J. Appl. Phys. 87, 8429 (2000).
[CrossRef]

1999 (2)

I. K. Hwang, S. H. Yun, and B. Y. Kim, Opt. Lett. 24, 1263 (1999).
[CrossRef]

V. Grubsky, A. Skorucak, D. S. Starodubov, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 87 (1999).
[CrossRef]

1998 (1)

1997 (2)

Y.-J. Rao, Meas. Sci. Technol. 8, 355 (1997).
[CrossRef]

M. L. von Bibra and A. Roberts, J. Lightwave Technol. 15, 1695 (1997).
[CrossRef]

1996 (2)

A. Roberts and M. L. von Bibra, J. Lightwave Technol. 14, 2554 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

1995 (1)

G. D. Maxwell and B. J. Ainslie, Electron. Lett. 30, 95 (1995).
[CrossRef]

1994 (1)

C. D. Poole, H. M. Presby, and J. P. Meester, Electron. Lett. 30, 1437 (1994).
[CrossRef]

1992 (1)

M. C. Farries, C. M. Ragdale, and D. C. Reid, Electron. Lett. 28, 487 (1992).
[CrossRef]

1980 (1)

J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Meth. 174, 257 (1980).
[CrossRef]

1974 (1)

E. P. EerNisse and C. B. Norris, J. Appl. Phys. 45, 5196 (1974).
[CrossRef]

Ainslie, B. J.

G. D. Maxwell and B. J. Ainslie, Electron. Lett. 30, 95 (1995).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Biersack, J. P.

J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Meth. 174, 257 (1980).
[CrossRef]

Brebner, J. L.

Canning, J.

Chandler, P. J.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994), p. 233.

Corle, T. R.

T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996), p. 247.

EerNisse, E. P.

E. P. EerNisse and C. B. Norris, J. Appl. Phys. 45, 5196 (1974).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Farries, M. C.

M. C. Farries, C. M. Ragdale, and D. C. Reid, Electron. Lett. 28, 487 (1992).
[CrossRef]

Feinberg, J.

V. Grubsky, A. Skorucak, D. S. Starodubov, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 87 (1999).
[CrossRef]

Fujimaki, M.

Grubsky, V.

V. Grubsky, A. Skorucak, D. S. Starodubov, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 87 (1999).
[CrossRef]

Haggmark, L. G.

J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Meth. 174, 257 (1980).
[CrossRef]

Huntington, S. T.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, J. Appl. Phys. 87, 8429 (2000).
[CrossRef]

Hwang, I. K.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kim, B. Y.

Kino, G. S.

T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996), p. 247.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Maxwell, G. D.

G. D. Maxwell and B. J. Ainslie, Electron. Lett. 30, 95 (1995).
[CrossRef]

Meester, J. P.

C. D. Poole, H. M. Presby, and J. P. Meester, Electron. Lett. 30, 1437 (1994).
[CrossRef]

Moss, D.

Mulvaney, P.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, J. Appl. Phys. 87, 8429 (2000).
[CrossRef]

Norris, C. B.

E. P. EerNisse and C. B. Norris, J. Appl. Phys. 45, 5196 (1974).
[CrossRef]

Ohki, Y.

Poole, C. D.

C. D. Poole, H. M. Presby, and J. P. Meester, Electron. Lett. 30, 1437 (1994).
[CrossRef]

Presby, H. M.

C. D. Poole, H. M. Presby, and J. P. Meester, Electron. Lett. 30, 1437 (1994).
[CrossRef]

Ragdale, C. M.

M. C. Farries, C. M. Ragdale, and D. C. Reid, Electron. Lett. 28, 487 (1992).
[CrossRef]

Rao, Y.-J.

Y.-J. Rao, Meas. Sci. Technol. 8, 355 (1997).
[CrossRef]

Reid, D. C.

M. C. Farries, C. M. Ragdale, and D. C. Reid, Electron. Lett. 28, 487 (1992).
[CrossRef]

Roberts, A.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, J. Appl. Phys. 87, 8429 (2000).
[CrossRef]

M. L. von Bibra and A. Roberts, J. Lightwave Technol. 15, 1695 (1997).
[CrossRef]

A. Roberts and M. L. von Bibra, J. Lightwave Technol. 14, 2554 (1996).
[CrossRef]

Roorda, S.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Skorucak, A.

V. Grubsky, A. Skorucak, D. S. Starodubov, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 87 (1999).
[CrossRef]

Starodubov, D. S.

V. Grubsky, A. Skorucak, D. S. Starodubov, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 87 (1999).
[CrossRef]

Townsend, P. D.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994), p. 233.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

von Bibra, M. L.

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, J. Appl. Phys. 87, 8429 (2000).
[CrossRef]

M. L. von Bibra and A. Roberts, J. Lightwave Technol. 15, 1695 (1997).
[CrossRef]

A. Roberts and M. L. von Bibra, J. Lightwave Technol. 14, 2554 (1996).
[CrossRef]

Yun, S. H.

Zhang, L.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994), p. 233.

Electron. Lett. (3)

M. C. Farries, C. M. Ragdale, and D. C. Reid, Electron. Lett. 28, 487 (1992).
[CrossRef]

G. D. Maxwell and B. J. Ainslie, Electron. Lett. 30, 95 (1995).
[CrossRef]

C. D. Poole, H. M. Presby, and J. P. Meester, Electron. Lett. 30, 1437 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Grubsky, A. Skorucak, D. S. Starodubov, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 87 (1999).
[CrossRef]

J. Appl. Phys. (2)

E. P. EerNisse and C. B. Norris, J. Appl. Phys. 45, 5196 (1974).
[CrossRef]

M. L. von Bibra, A. Roberts, P. Mulvaney, and S. T. Huntington, J. Appl. Phys. 87, 8429 (2000).
[CrossRef]

J. Lightwave Technol. (3)

M. L. von Bibra and A. Roberts, J. Lightwave Technol. 15, 1695 (1997).
[CrossRef]

A. Roberts and M. L. von Bibra, J. Lightwave Technol. 14, 2554 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

Y.-J. Rao, Meas. Sci. Technol. 8, 355 (1997).
[CrossRef]

Nucl. Instrum. Meth. (1)

J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Meth. 174, 257 (1980).
[CrossRef]

Opt. Lett. (3)

Other (2)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994), p. 233.

T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996), p. 247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic showing the use of a focused ion beam for direct writing of a grating in the core of a fiber.

Fig. 2
Fig. 2

(a) Differential interference contrast image of a fiber containing a grating with a period of 500 μm and fabricated with an average dose of 1.2×1015 ions cm-2. (b) Intensity along the core of the fiber as a function of position normalized to the background intensity passing through the fiber cladding.

Fig. 3
Fig. 3

Transmission spectrum through a fiber with a grating with a period of 250 μm and fabricated with an average proton dose of 0.7×1015 ions cm-2 at an energy of 2.4  MeV.

Metrics