Abstract

We have developed a prototype apparatus for real-time closed-loop measurement and correction of aberrations in the human eye. The apparatus uses infrared light to measure the wave-front aberration at 25  Hz with a Hartmann–Shack sensor. Defocus is removed by a motorized optometer, and higher-order aberrations are corrected by a membrane deformable mirror. The device was first tested with an artificial eye. Correction of static aberrations takes approximately five iterations, making the system capable of following aberration changes at 5  Hz. This capability allows one to track most of the aberration dynamics in the eye. Results in living eyes showed effective closed-loop correction of aberrations, with a residual uncorrected wave front of 0.1 μm for a 4.3-mm pupil diameter. Retinal images of a point source in different subjects with and without adaptive correction of aberrations were estimated in real time. The results demonstrate real-time closed-loop correction of aberration in the living eye. An application of this device is as electro-optic “spectacles” to improve vision.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, San Diego, Calif., 1997).
  2. M. S. Smirnov, Biofizika 6, 776 (1961).
  3. A. W. Dreher, J. F. Bille, and R. N. Weinreb, Appl. Opt. 28, 804 (1989).
    [CrossRef] [PubMed]
  4. P. Artal and R. Navarro, Opt. Lett. 14, 1098 (1989).
    [CrossRef] [PubMed]
  5. J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
    [CrossRef]
  6. F. Vargas-Martin, P. Prieto, and P. Artal, J. Opt. Soc. Am. A 15, 2552 (1998).
    [CrossRef]
  7. R. Navarro, E. Moreno-Barriuso, S. Bará, and T. Mancebo, Opt. Lett. 25, 236 (2000).
    [CrossRef]
  8. H. J. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
    [CrossRef]
  9. G. V. Vdovin and P. M. Sarro, Appl. Opt. 34, 2968 (1995).
    [CrossRef] [PubMed]
  10. L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, Appl. Opt. 38, 168 (1999).
    [CrossRef]
  11. D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
    [CrossRef]
  12. C. Paterson, I. Munro, and J. C. Dainty, Opt. Express 6, 175 (2000), http://epubs.osa.org/opticsexpress.
    [CrossRef] [PubMed]
  13. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, J. Opt. Soc. Am. A 11, 1949 (1994).
    [CrossRef]
  14. J. Liang and D. R. Williams, J. Opt. Soc. Am. A 14, 2873 (1997).
    [CrossRef]
  15. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, J. Opt. Soc. Am. A 17, 1388 (2000).
    [CrossRef]

2001

H. J. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
[CrossRef]

2000

1999

1998

1997

J. Liang and D. R. Williams, J. Opt. Soc. Am. A 14, 2873 (1997).
[CrossRef]

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, San Diego, Calif., 1997).

J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
[CrossRef]

1995

1994

1989

1961

M. S. Smirnov, Biofizika 6, 776 (1961).

Aragón, J. L.

H. J. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
[CrossRef]

Artal, P.

Bará, S.

Bartsch, D. U.

Bille, J. F.

Browne, S.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Dainty, J. C.

Dayton, D. S.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Dreher, A. W.

Fainman, Y.

Freeman, W. R.

Gallegos, J.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Goelz, S.

Gonglewski, J.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Grimm, B.

Hofer, H. J.

H. J. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
[CrossRef]

Liang, J.

MacDermott, S.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Mancebo, T.

Miller, D. T.

J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
[CrossRef]

Moreno-Barriuso, E.

Munro, I.

Navarro, R.

Paterson, C.

Prieto, P.

Prieto, P. M.

Restaino, S.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Rogers, S.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Sarro, P. M.

Shilko, M.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Singer, B.

H. J. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
[CrossRef]

Smirnov, M. S.

M. S. Smirnov, Biofizika 6, 776 (1961).

Sun, P. C.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, San Diego, Calif., 1997).

Vaidyanathan, M.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Vargas-Martin, F.

Vargas-Martín, F.

Vdovin, G. V.

Weinreb, R. N.

Williams, D. R.

H. J. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
[CrossRef]

J. Liang and D. R. Williams, J. Opt. Soc. Am. A 14, 2873 (1997).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
[CrossRef]

Zhu, L.

Appl. Opt.

Biofizika

M. S. Smirnov, Biofizika 6, 776 (1961).

J. Opt. Soc. Am. A

J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
[CrossRef]

H. J. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

D. S. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. MacDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, Opt. Commun. 176, 339 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, San Diego, Calif., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram (not to scale) of the experimental setup: BS, beam splitter; M, mirrors; MDM, membrane deformable mirror; HS, wave-front sensor.

Fig. 2
Fig. 2

Evolution of the rms error (circles) and two Zernike coefficients [coma (triangles) and spherical aberrations (squares)] versus time in a human eye (subject PA). A modulus 2π representation of the wave fronts (top inset) and the associated PSFs of the first four iterations in the same experiment (bottom inset) are also included.

Fig. 3
Fig. 3

Evolution of rms error versus time in subject EB. A modulus 2π representation of wave fronts (left-hand inset) and the associated PSFs (right-hand inset) of the first (top) and fourth (bottom) iterations in the same experiment.

Fig. 4
Fig. 4

Series of PSFs taken every 0.2  s, estimated from wave-front data without adaptive correction (OFF) and with closed-loop correction activated (ON). Both series are for subject PA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔS=k=1Mdkzk.
ΔS=l=1Pclφl.
ΔS=l=1Pclk=1Mbklzk,
dk=l=1Pclbkl,d=Bc.
ctn=Mctn-1-B-1dmtn.

Metrics