Abstract

We report what is to our knowledge the first application of high-efficiency InGaAs/InP photon-counting diode detectors in time-resolved photoluminescence measurements at wavelength greater than 1500  nm. When they were cooled to 77  K and used in conjunction with the time-correlated single-photon counting technique, the detectors were capable of an instrumental response of 230  ps and a noise equivalent power of 2×10-17 W Hz-1/2. Preliminary measurement of a semiconductor heterostructure indicates sensitivity at photogenerated carrier densities as low as 1014 cm-3. This development facilitates the detailed characterization of dominant recombination mechanisms in semiconductor optoelectronic materials and devices designed to operate in the third telecommunications spectral window.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
  2. G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, and A. Lacaita, Appl. Opt. 35, 916 (1996).
    [CrossRef] [PubMed]
  3. G. S. Buller, J. S. Massa, and A. C. Walker, Rev. Sci. Instrum. 63, 2994 (1992).
    [CrossRef]
  4. R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, Appl. Phys. Lett. 65, 1790 (1994).
    [CrossRef]
  5. A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
    [CrossRef]
  6. Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, and N. M. Stel’makh, Sov. Tech. Phys. Lett. 12, 452 (1996).
  7. J. M. Smith, P. A. Hiskett, I. Gontijo, L. Purves, and G. S. Buller, “A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500  nm,” Rev. Sci. Instrum. (to be published).
  8. P. A. Hiskett, J. M. Smith, A. Y. Loudon, G. S. Buller, P. D. Townsend, and M. J. Robertson, Appl. Opt. 39, 6818 (2000).
    [CrossRef]
  9. Here I have taken the radiative recombination coefficient to be B=1×10-10 cm3 s-1. The detection volume is the product of the detection area ∼50 μm2 with the sum of the quantum well widths 60×10 nm, and the objective lens has a numerical aperture of 0.4, giving an optical collection efficiency of ∼0.3%.
  10. For a full treatment, See Ref.  7.

2000

1999

A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
[CrossRef]

1996

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, and N. M. Stel’makh, Sov. Tech. Phys. Lett. 12, 452 (1996).

G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, and A. Lacaita, Appl. Opt. 35, 916 (1996).
[CrossRef] [PubMed]

1994

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, Appl. Phys. Lett. 65, 1790 (1994).
[CrossRef]

1992

G. S. Buller, J. S. Massa, and A. C. Walker, Rev. Sci. Instrum. 63, 2994 (1992).
[CrossRef]

Alferov, Z. I.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, and N. M. Stel’makh, Sov. Tech. Phys. Lett. 12, 452 (1996).

Buller, G. S.

P. A. Hiskett, J. M. Smith, A. Y. Loudon, G. S. Buller, P. D. Townsend, and M. J. Robertson, Appl. Opt. 39, 6818 (2000).
[CrossRef]

G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, and A. Lacaita, Appl. Opt. 35, 916 (1996).
[CrossRef] [PubMed]

G. S. Buller, J. S. Massa, and A. C. Walker, Rev. Sci. Instrum. 63, 2994 (1992).
[CrossRef]

J. M. Smith, P. A. Hiskett, I. Gontijo, L. Purves, and G. S. Buller, “A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500  nm,” Rev. Sci. Instrum. (to be published).

Champagne, A.

A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
[CrossRef]

Cova, S.

Fancey, S. J.

Gontijo, I.

J. M. Smith, P. A. Hiskett, I. Gontijo, L. Purves, and G. S. Buller, “A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500  nm,” Rev. Sci. Instrum. (to be published).

Güçlü, A. D.

A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
[CrossRef]

Hiskett, P. A.

P. A. Hiskett, J. M. Smith, A. Y. Loudon, G. S. Buller, P. D. Townsend, and M. J. Robertson, Appl. Opt. 39, 6818 (2000).
[CrossRef]

J. M. Smith, P. A. Hiskett, I. Gontijo, L. Purves, and G. S. Buller, “A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500  nm,” Rev. Sci. Instrum. (to be published).

Iwamura, H.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, Appl. Phys. Lett. 65, 1790 (1994).
[CrossRef]

Kagawa, T.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, Appl. Phys. Lett. 65, 1790 (1994).
[CrossRef]

Kawamura, Y.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, Appl. Phys. Lett. 65, 1790 (1994).
[CrossRef]

Lacaita, A.

Loudon, A. Y.

Maciejko, R.

A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
[CrossRef]

Massa, J. S.

Morris, D.

A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
[CrossRef]

O’Connor, D. V.

See, for example, D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Phillips, D.

See, for example, D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Portnoi, E. L.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, and N. M. Stel’makh, Sov. Tech. Phys. Lett. 12, 452 (1996).

Purves, L.

J. M. Smith, P. A. Hiskett, I. Gontijo, L. Purves, and G. S. Buller, “A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500  nm,” Rev. Sci. Instrum. (to be published).

Rejeb, C.

A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
[CrossRef]

Robertson, M. J.

Smith, J. M.

P. A. Hiskett, J. M. Smith, A. Y. Loudon, G. S. Buller, P. D. Townsend, and M. J. Robertson, Appl. Opt. 39, 6818 (2000).
[CrossRef]

J. M. Smith, P. A. Hiskett, I. Gontijo, L. Purves, and G. S. Buller, “A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500  nm,” Rev. Sci. Instrum. (to be published).

Stel’makh, N. M.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, and N. M. Stel’makh, Sov. Tech. Phys. Lett. 12, 452 (1996).

Takahashi, R.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, Appl. Phys. Lett. 65, 1790 (1994).
[CrossRef]

Townsend, P. D.

Walker, A. C.

Zuravlev, A. B.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, and N. M. Stel’makh, Sov. Tech. Phys. Lett. 12, 452 (1996).

Appl. Opt.

Appl. Phys. Lett.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, Appl. Phys. Lett. 65, 1790 (1994).
[CrossRef]

J. Appl. Phys.

A. D. Güçlü, C. Rejeb, R. Maciejko, D. Morris, and A. Champagne, J. Appl. Phys. 86, 3391 (1999).
[CrossRef]

Rev. Sci. Instrum.

G. S. Buller, J. S. Massa, and A. C. Walker, Rev. Sci. Instrum. 63, 2994 (1992).
[CrossRef]

Sov. Tech. Phys. Lett.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, and N. M. Stel’makh, Sov. Tech. Phys. Lett. 12, 452 (1996).

Other

J. M. Smith, P. A. Hiskett, I. Gontijo, L. Purves, and G. S. Buller, “A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500  nm,” Rev. Sci. Instrum. (to be published).

See, for example, D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Here I have taken the radiative recombination coefficient to be B=1×10-10 cm3 s-1. The detection volume is the product of the detection area ∼50 μm2 with the sum of the quantum well widths 60×10 nm, and the objective lens has a numerical aperture of 0.4, giving an optical collection efficiency of ∼0.3%.

For a full treatment, See Ref.  7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the TRPL apparatus. This is a standard TCSPC setup but with a cooled InGaAs/InP SPAD detector, which is sensitive to wavelengths as long as 1600  nm. TAC, time-to amplitude converter.

Fig. 2
Fig. 2

Semilogarithmic plot of the instrumental response and sample data for the TRPL measurements. The sample data were measured from an InGaAsP MQW p–i–n-doped structure at room temperature and at a luminescence wavelength of 1540  nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NEP=ωDE2ND,

Metrics