Abstract

We discuss the possibility of using temporally tailored pump laser pulses to control the temporal width and shape of optical pulses generated in a process of transient sum-frequency mixing in crystals with second-order nonlinearity. Specific calculations performed in a model crystal in the case of fifth-harmonic generation are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, Opt. Lett. 18, 2035 (1993).
  2. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, Opt. Lett. 19, 1538 (1994).
    [PubMed]
  3. V. Petrov, F. Rotermund, and F. Noack, Electron. Lett. 34, 1748 (1998).
  4. R. Danielius, A. Dubietis, A. Piskarskas, G. Valiulis, and A. Varanavicius, Opt. Lett. 21, 216 (1996).
    [PubMed]
  5. A. Dubietis, G. Tamosauskas, A. Varanavicius, G. Valiulis, and R. Danielius, J. Opt. Soc. Am. B 17, 48 (2000).
  6. A. Dubietis, G. Tamosauskas, A. Varanavicius, G. Valiulis, and R. Danielius, Opt. Lett. 25, 1116 (2000).
  7. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
  8. M. M. Wefers and K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).
  9. M. A. Dugan, J. X. Tull, and W. S. Warren, J. Opt. Soc. Am. B 14, 2348 (1997).
  10. N. Wang and H. Rabitz, Phys. Rev. A 52, R17 (1995).
  11. N. Wang and H. Rabitz, J. Chem. Phys. 104, 1173 (1996).
  12. N. Wang and H. Rabitz, Phys. Rev. A 53, 1879 (1996).
    [CrossRef] [PubMed]
  13. R. Buffa and S. Cavalieri, J. Opt. Soc. Am. B 17, 1901 (2000).
    [CrossRef]
  14. J. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
    [CrossRef] [PubMed]
  15. W. H. Press, B. P. Flannery, S. A. Teukolski, and T. Wetterlig, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, London, 1989).
  16. D. Yelin, D. Meshulach, and Y. Silberberg, Opt. Lett. 22, 1793 (1997).
    [CrossRef]
  17. D. Meshulach, D. Yelin, and Y. Silberberg, J. Opt. Soc. Am. B 15, 1615 (1998).
    [CrossRef]

2000 (3)

1998 (2)

D. Meshulach, D. Yelin, and Y. Silberberg, J. Opt. Soc. Am. B 15, 1615 (1998).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, Electron. Lett. 34, 1748 (1998).

1997 (2)

1996 (3)

R. Danielius, A. Dubietis, A. Piskarskas, G. Valiulis, and A. Varanavicius, Opt. Lett. 21, 216 (1996).
[PubMed]

N. Wang and H. Rabitz, J. Chem. Phys. 104, 1173 (1996).

N. Wang and H. Rabitz, Phys. Rev. A 53, 1879 (1996).
[CrossRef] [PubMed]

1995 (3)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).

N. Wang and H. Rabitz, Phys. Rev. A 52, R17 (1995).

M. M. Wefers and K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).

1994 (1)

1993 (1)

1990 (1)

J. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Bakker, J. J.

J. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Buffa, R.

Cavalieri, S.

Danielius, R.

Dubietis, A.

Dugan, M. A.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolski, and T. Wetterlig, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, London, 1989).

Kittelmann, O.

Korn, G.

Kuipers, L.

J. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Lagendijk, A.

J. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Meshulach, D.

Nelson, K. A.

Noack, F.

Petrov, V.

V. Petrov, F. Rotermund, and F. Noack, Electron. Lett. 34, 1748 (1998).

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, Opt. Lett. 19, 1538 (1994).
[PubMed]

Piskarskas, A.

Planken, P. C.

J. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolski, and T. Wetterlig, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, London, 1989).

Rabitz, H.

N. Wang and H. Rabitz, Phys. Rev. A 53, 1879 (1996).
[CrossRef] [PubMed]

N. Wang and H. Rabitz, J. Chem. Phys. 104, 1173 (1996).

N. Wang and H. Rabitz, Phys. Rev. A 52, R17 (1995).

Ringling, J.

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noack, Electron. Lett. 34, 1748 (1998).

Seifert, F.

Silberberg, Y.

Squier, J.

Tamosauskas, G.

Teukolski, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolski, and T. Wetterlig, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, London, 1989).

Tull, J. X.

Valiulis, G.

Varanavicius, A.

Wang, N.

N. Wang and H. Rabitz, J. Chem. Phys. 104, 1173 (1996).

N. Wang and H. Rabitz, Phys. Rev. A 53, 1879 (1996).
[CrossRef] [PubMed]

N. Wang and H. Rabitz, Phys. Rev. A 52, R17 (1995).

Warren, W. S.

Wefers, M. M.

Weiner, A. M.

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).

Wetterlig, T.

W. H. Press, B. P. Flannery, S. A. Teukolski, and T. Wetterlig, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, London, 1989).

Yelin, D.

Electron. Lett. (1)

V. Petrov, F. Rotermund, and F. Noack, Electron. Lett. 34, 1748 (1998).

J. Chem. Phys. (1)

N. Wang and H. Rabitz, J. Chem. Phys. 104, 1173 (1996).

J. Opt. Soc. Am. B (5)

Opt. Lett. (5)

Phys. Rev. A (3)

N. Wang and H. Rabitz, Phys. Rev. A 53, 1879 (1996).
[CrossRef] [PubMed]

J. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

N. Wang and H. Rabitz, Phys. Rev. A 52, R17 (1995).

Prog. Quantum Electron. (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).

Other (1)

W. H. Press, B. P. Flannery, S. A. Teukolski, and T. Wetterlig, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, London, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-conversion efficiency along the crystal in the case of Gaussian pump pulses Xi0τ of Table  1: (a) X10=1.5, X20=2.6; (b) X10=1.5, X20=3.5; (c) X10=1.6, X20=5.2.

Fig. 2
Fig. 2

Temporal shapes of the SF pulses X3Lτ generated by the Gaussian pump pulses Xi0τ of Fig.  1.

Fig. 3
Fig. 3

Temporal shape of the pump pulses Xi0τ that generate a Gaussian SF pulse X3Lτ of peak equal to 3 and temporal FWHM equal to 1.32.

Fig. 4
Fig. 4

Energy-conversion efficiency along the crystal in the case of optimal pump pulses that generate a Gaussian SF pulse X3Lτ of a peak equal to 3.5 and a temporal FWHM equal to 1.32 (solid curve) and of a peak equal to 3.4 and a temporal FWHM equal to 1.42 (dashed curve).

Tables (1)

Tables Icon

Table 1 Parameters Used in the Calculations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L^X+fX=0,
Xη,τ=[X1η,τX2η,τX3η,τ],
L^=[η+L0L13τ000η+L0L23τ000η],
fX=[Γ1X2X3Γ2X1X3-Γ3X1X2].
Xη=0,τ=[X10τX20τ0].
Xη=L/L0,τ=[X1LτX2LτX3Lτ].
Φ=12(-+X3Lτ-Xrτ2dτ+β-+X10τ2+X20τ2dτ),
λη,τ=[λ1η,τλ2η,τλ3η,τ]
J=Φ+0L/L0dη-+dτλTL^X+fX,

Metrics