Abstract

Large Goos-Hänchen effects are isolated for reflection on a metallic grating. These shifts occur in the vicinity of Wood anomalies. Depending on the nature of the anomaly, these displacements are found to be either positive or, contrary to the usual GH effect, clearly negative. Those shifts, associated with forward and backward leaky surface waves, are as large as plus or minus tens of wavelengths for a classic metallic grating.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Isaac Newton, Opticks (Dover, New York, 1952).
  2. F. Goos and H. Hänchen, Ann. Phys. (Leipzig) 1, 333 (1947).
    [CrossRef]
  3. K. Artmann, Ann. Phys. (Leipzig) 2, 87 (1948).
    [CrossRef]
  4. E. P. Wigner, Phys. Rev. 98, 145 (1955).
    [CrossRef]
  5. F. T. Smith, Phys. Rev. 118, 349 (1960).
    [CrossRef]
  6. M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
    [CrossRef]
  7. J. L. Agudin, Phys. Rev. 171, 1385 (1968).
    [CrossRef]
  8. F. Bretenaker, A. Le Floch, and L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
    [CrossRef] [PubMed]
  9. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 24, 1511 (1995).
    [CrossRef]
  10. D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000).
    [CrossRef] [PubMed]
  11. R. W. Wood, Philos. Mag. 4, 396 (1902).
    [CrossRef]
  12. T. Tamir and H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).
  13. S. Zhang and T. Tamir, J. Opt. Soc. Am. A 6, 1368 (1989).
    [CrossRef]
  14. R. Güther and B. H. Kleemann, J. Mod. Opt. 45, 1375 (1998).
    [CrossRef]
  15. M. A. Breazeale and M. A. Torbett, Appl. Phys. Lett. 29, 456 (1976).
    [CrossRef]
  16. A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).
    [CrossRef]
  17. T. Tamir and S. Zhang, J. Opt. Soc. Am. A 14, 1607 (1997).
    [CrossRef]
  18. F. Schreier, M. Schmitz, and O. Bryngdahl, Opt. Lett. 23, 1337 (1998).
    [CrossRef]
  19. D. M. Marom, D. Panasenko, P. C. Sun, and Y. Fainman, Opt. Lett. 24, 563 (1999).
    [CrossRef]
  20. S. M. Norton, G. M. Morris, and T. Erdogan, J. Opt. Soc. Am. A 15, 464 (1998).
    [CrossRef]
  21. D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 17, 1241 (2000).
    [CrossRef]

2000 (2)

D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000).
[CrossRef] [PubMed]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 17, 1241 (2000).
[CrossRef]

1999 (1)

1998 (3)

1997 (1)

1995 (1)

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 24, 1511 (1995).
[CrossRef]

1992 (1)

F. Bretenaker, A. Le Floch, and L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

1989 (1)

1976 (1)

M. A. Breazeale and M. A. Torbett, Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

1971 (1)

1968 (1)

J. L. Agudin, Phys. Rev. 171, 1385 (1968).
[CrossRef]

1965 (1)

1963 (1)

M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[CrossRef]

1960 (1)

F. T. Smith, Phys. Rev. 118, 349 (1960).
[CrossRef]

1955 (1)

E. P. Wigner, Phys. Rev. 98, 145 (1955).
[CrossRef]

1948 (1)

K. Artmann, Ann. Phys. (Leipzig) 2, 87 (1948).
[CrossRef]

1947 (1)

F. Goos and H. Hänchen, Ann. Phys. (Leipzig) 1, 333 (1947).
[CrossRef]

1902 (1)

R. W. Wood, Philos. Mag. 4, 396 (1902).
[CrossRef]

Agudin, J. L.

J. L. Agudin, Phys. Rev. 171, 1385 (1968).
[CrossRef]

Artmann, K.

K. Artmann, Ann. Phys. (Leipzig) 2, 87 (1948).
[CrossRef]

Bertoni, H. L.

Breazeale, M. A.

M. A. Breazeale and M. A. Torbett, Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

Bretenaker, F.

D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000).
[CrossRef] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 24, 1511 (1995).
[CrossRef]

F. Bretenaker, A. Le Floch, and L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

Bryngdahl, O.

Chauvat, D.

D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000).
[CrossRef] [PubMed]

Dunn, S. C.

Dutriaux, L.

F. Bretenaker, A. Le Floch, and L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

Emile, O.

D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000).
[CrossRef] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 24, 1511 (1995).
[CrossRef]

Erdogan, T.

Fainman, Y.

Froissart, M.

M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[CrossRef]

Galstyan, T.

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 24, 1511 (1995).
[CrossRef]

Goldberger, M. L.

M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[CrossRef]

Goos, F.

F. Goos and H. Hänchen, Ann. Phys. (Leipzig) 1, 333 (1947).
[CrossRef]

Güther, R.

R. Güther and B. H. Kleemann, J. Mod. Opt. 45, 1375 (1998).
[CrossRef]

Hänchen, H.

F. Goos and H. Hänchen, Ann. Phys. (Leipzig) 1, 333 (1947).
[CrossRef]

Hessel, A.

Jacob, D. K.

Kleemann, B. H.

R. Güther and B. H. Kleemann, J. Mod. Opt. 45, 1375 (1998).
[CrossRef]

Le Floch, A.

D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000).
[CrossRef] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 24, 1511 (1995).
[CrossRef]

F. Bretenaker, A. Le Floch, and L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

Marom, D. M.

Moharam, M. G.

Morris, G. M.

Newton, Isaac

Isaac Newton, Opticks (Dover, New York, 1952).

Norton, S. M.

Oliner, A. A.

Panasenko, D.

Schmitz, M.

Schreier, F.

Smith, F. T.

F. T. Smith, Phys. Rev. 118, 349 (1960).
[CrossRef]

Sun, P. C.

Tamir, T.

Torbett, M. A.

M. A. Breazeale and M. A. Torbett, Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

Watson, K. M.

M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[CrossRef]

Wigner, E. P.

E. P. Wigner, Phys. Rev. 98, 145 (1955).
[CrossRef]

Wood, R. W.

R. W. Wood, Philos. Mag. 4, 396 (1902).
[CrossRef]

Zhang, S.

Ann. Phys. (Leipzig) (2)

F. Goos and H. Hänchen, Ann. Phys. (Leipzig) 1, 333 (1947).
[CrossRef]

K. Artmann, Ann. Phys. (Leipzig) 2, 87 (1948).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. A. Breazeale and M. A. Torbett, Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

J. Mod. Opt. (1)

R. Güther and B. H. Kleemann, J. Mod. Opt. 45, 1375 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Opt. Lett. (2)

Philos. Mag. (1)

R. W. Wood, Philos. Mag. 4, 396 (1902).
[CrossRef]

Phys. Rev. (4)

E. P. Wigner, Phys. Rev. 98, 145 (1955).
[CrossRef]

F. T. Smith, Phys. Rev. 118, 349 (1960).
[CrossRef]

M. Froissart, M. L. Goldberger, and K. M. Watson, Phys. Rev. 131, 2820 (1963).
[CrossRef]

J. L. Agudin, Phys. Rev. 171, 1385 (1968).
[CrossRef]

Phys. Rev. Lett. (3)

F. Bretenaker, A. Le Floch, and L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, Phys. Rev. Lett. 24, 1511 (1995).
[CrossRef]

D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys. Rev. Lett. 84, 71 (2000).
[CrossRef] [PubMed]

Other (1)

Isaac Newton, Opticks (Dover, New York, 1952).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

0th-order reflection of an optical beam by a metallic grating: (a) disappearance of a positive order (e.g., the 1st order) and forward displacement of the TM polarized beam, (b) appearance of a negative order (e.g., the - 4 th order) and backward displacement.

Fig. 2
Fig. 2

Measured 0th-order reflection coefficients R of the grating as a function of angle of incidence i for TM (diamonds) and TE (circles) polarization. Arrows indicate the disappearance or appearance of a diffracted order. The interrupted part of the horizontal axis corresponds to a small angular range where measurements were disturbed by another diffracted beam (the - 3   rd ) reflected back into the laser.

Fig. 3
Fig. 3

(a) Measured spatial shifts Δ x associated with the disappearance of the 1st-order diffracted beam. The measurement uncertainty spans ± 3   μ m for i < 36.5 ° to ± 8   μ m for i > 36.5 ° , depending on the intensity of the reflection coefficients. (b) Corresponding retardances δ between TM and TE polarized reflected beams measured by ellipsome-try (squares) and deduced from measurements of spatial shifts (circles).

Fig. 4
Fig. 4

Same as Fig.  3 but for the appearance of the - 4 th -order diffracted beam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ x = - λ 2 π × δ i ,

Metrics