Abstract

We have demonstrated, for the first time to our knowledge, periodic poling of a 2-mm-thick near-stoichiometric LiTaO3 substrate and its operation in a nanosecond optical parametric oscillator. Because the coercive field of stoichiometric LiTaO3 is 2 kV/mm, which is approximately one tenth that of the conventional congruent field, periodic poling of thicker stoichiometric substrates was successfully performed by means of an electric-field poling process at room temperature. The performance of a parametric oscillator with a 1-mm-thick sample was compared with that of the oscillator with the periodically poled congruent oscillator. The stoichiometric device exhibited better performance.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ito, Nonlinear Opt. 7, 327 (1994).
  2. M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, and H. Ito, Appl. Opt. 38, 2560 (1999).
    [CrossRef]
  3. S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
    [CrossRef]
  4. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, Opt. Lett. 23, 664 (1998).
    [CrossRef]
  5. J. Hellström, V. Pasiskevicius, F. Laurell, and H. Karlsson, Opt. Lett. 24, 1233 (1999).
    [CrossRef]
  6. H. Karlsson, M. Olson, G. Arvidsson, F. Laurell, U. Bäder, A. Borsutzky, R. Wallenstein, S. Wicksröm, and M. Gustafsson, Opt. Lett. 24, 330 (1999).
    [CrossRef]
  7. K. Kitamura, Y. Furukawa, and N. Iye, Ferroelectrics 202, 21 (1997).
    [CrossRef]
  8. K. Kitamura, Ceram. Trans. 60, 37 (1995).
  9. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
    [CrossRef]
  10. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
    [CrossRef]
  11. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
    [CrossRef]
  12. V. Gopalan and T. E. Mitchell, J. Appl. Phys. 85, 2304 (1999).
    [CrossRef]

1999 (4)

1998 (4)

M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, Opt. Lett. 23, 664 (1998).
[CrossRef]

S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
[CrossRef]

1997 (2)

1995 (1)

K. Kitamura, Ceram. Trans. 60, 37 (1995).

1994 (1)

H. Ito, Nonlinear Opt. 7, 327 (1994).

Arvidsson, G.

Bäder, U.

Borsutzky, A.

Dominic, V.

Eckardt, R. C.

Furukawa, Y.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, and N. Iye, Ferroelectrics 202, 21 (1997).
[CrossRef]

Gopalan, V.

V. Gopalan and T. E. Mitchell, J. Appl. Phys. 85, 2304 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
[CrossRef]

Gustafsson, M.

Hatanaka, T.

Hellström, J.

Ito, H.

M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, and H. Ito, Appl. Opt. 38, 2560 (1999).
[CrossRef]

S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
[CrossRef]

H. Ito, Nonlinear Opt. 7, 327 (1994).

Ito, R.

Iye, N.

K. Kitamura, Y. Furukawa, and N. Iye, Ferroelectrics 202, 21 (1997).
[CrossRef]

Izumi, S.

M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, and H. Ito, Appl. Opt. 38, 2560 (1999).
[CrossRef]

S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
[CrossRef]

Karlsson, H.

Kitamoto, A.

Kitamura, K.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, and N. Iye, Ferroelectrics 202, 21 (1997).
[CrossRef]

K. Kitamura, Ceram. Trans. 60, 37 (1995).

Kondo, T.

Laurell, F.

Missey, M. J.

Mitchell, T. E.

V. Gopalan and T. E. Mitchell, J. Appl. Phys. 85, 2304 (1999).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Myers, L. E.

Niwa, K.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
[CrossRef]

Olson, M.

Pasiskevicius, V.

Sato, M.

M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, and H. Ito, Appl. Opt. 38, 2560 (1999).
[CrossRef]

S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
[CrossRef]

Shirane, M.

Shoji, I.

Suzuki, J.

S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
[CrossRef]

Taniuchi, T.

M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, and H. Ito, Appl. Opt. 38, 2560 (1999).
[CrossRef]

S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
[CrossRef]

Wallenstein, R.

Wicksröm, S.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).
[CrossRef]

Ceram. Trans. (1)

K. Kitamura, Ceram. Trans. 60, 37 (1995).

Ferroelectrics (1)

K. Kitamura, Y. Furukawa, and N. Iye, Ferroelectrics 202, 21 (1997).
[CrossRef]

J. Appl. Phys. (1)

V. Gopalan and T. E. Mitchell, J. Appl. Phys. 85, 2304 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Izumi, M. Sato, J. Suzuki, T. Taniuchi, and H. Ito, Jpn. J. Appl. Phys. 37, L1383 (1998).
[CrossRef]

Nonlinear Opt. (1)

H. Ito, Nonlinear Opt. 7, 327 (1994).

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

+Z and -Z surfaces with a 29µm period and Y surface with a 30µm period of 2-mm-thick PP SLT.

Fig. 2
Fig. 2

-Z surface of 0.5-mm-thick PP CLT with a grating period of 29 µm. Note that the domain structure of the +Z surface is similar to that of SLT as shown in Fig. 1(a).

Fig. 3
Fig. 3

Average signal output power versus average pump power. For PP SLT, the oscillation threshold was 120 mW and the slope efficiency was 18.5%; for PP CLT the respective values were 300 mW and 13%.

Fig. 4
Fig. 4

Comparison of the signal wavelengths of PP SLT and other PP materials.

Metrics