Abstract

We present a technique for performing three-dimensional (3D) pattern recognition by use of in-line digital holography. The complex amplitude distribution generated by a 3D object at an arbitrary plane located in the Fresnel diffraction region is recorded by phase-shifting interferometry. The digital hologram contains information about the 3D object’s shape, location, and orientation. This information allows us to perform 3D pattern-recognition techniques with high discrimination and to measure 3D orientation changes. Experimental results are presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
  2. J. L. Horner and P. D. Gianino, Appl. Opt. 23, 812 (1984).
    [CrossRef]
  3. D. Psaltis, E. G. Paek, and S. S. Venkatesh, Opt. Eng. 23, 698 (1984).
  4. Ph. Réfrégier, Opt. Lett. 15, 854 (1990).
    [CrossRef]
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  6. A. Pu, R. Denkewalter, and D. Psaltis, Opt. Eng. 36, 2737 (1997).
    [CrossRef]
  7. J. Rosen, Opt. Lett. 22, 964 (1997).
    [CrossRef] [PubMed]
  8. H. Arimoto, K. Yoshimori, and K. Itoh, Opt. Commun. 170, 319 (1999).
    [CrossRef]
  9. J. J. Esteve-Taboada, D. Mas, and J. García, Appl. Opt. 22, 4760 (1999).
    [CrossRef]
  10. H. J. Caulfield, ed., Handbook of Optical Holography (Academic, London, 1979).
  11. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, Appl. Opt. 13, 2693 (1974).
    [CrossRef] [PubMed]
  12. I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).
    [CrossRef] [PubMed]

1999 (2)

H. Arimoto, K. Yoshimori, and K. Itoh, Opt. Commun. 170, 319 (1999).
[CrossRef]

J. J. Esteve-Taboada, D. Mas, and J. García, Appl. Opt. 22, 4760 (1999).
[CrossRef]

1997 (3)

1990 (1)

1984 (2)

D. Psaltis, E. G. Paek, and S. S. Venkatesh, Opt. Eng. 23, 698 (1984).

J. L. Horner and P. D. Gianino, Appl. Opt. 23, 812 (1984).
[CrossRef]

1974 (1)

1964 (1)

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).

Arimoto, H.

H. Arimoto, K. Yoshimori, and K. Itoh, Opt. Commun. 170, 319 (1999).
[CrossRef]

Brangaccio, D. J.

Bruning, J. H.

Denkewalter, R.

A. Pu, R. Denkewalter, and D. Psaltis, Opt. Eng. 36, 2737 (1997).
[CrossRef]

Esteve-Taboada, J. J.

J. J. Esteve-Taboada, D. Mas, and J. García, Appl. Opt. 22, 4760 (1999).
[CrossRef]

Gallagher, J. E.

García, J.

J. J. Esteve-Taboada, D. Mas, and J. García, Appl. Opt. 22, 4760 (1999).
[CrossRef]

Gianino, P. D.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Herriott, D. R.

Horner, J. L.

Itoh, K.

H. Arimoto, K. Yoshimori, and K. Itoh, Opt. Commun. 170, 319 (1999).
[CrossRef]

Mas, D.

J. J. Esteve-Taboada, D. Mas, and J. García, Appl. Opt. 22, 4760 (1999).
[CrossRef]

Paek, E. G.

D. Psaltis, E. G. Paek, and S. S. Venkatesh, Opt. Eng. 23, 698 (1984).

Psaltis, D.

A. Pu, R. Denkewalter, and D. Psaltis, Opt. Eng. 36, 2737 (1997).
[CrossRef]

D. Psaltis, E. G. Paek, and S. S. Venkatesh, Opt. Eng. 23, 698 (1984).

Pu, A.

A. Pu, R. Denkewalter, and D. Psaltis, Opt. Eng. 36, 2737 (1997).
[CrossRef]

Réfrégier, Ph.

Rosen, J.

Rosenfeld, D. P.

VanderLugt, A.

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).

Venkatesh, S. S.

D. Psaltis, E. G. Paek, and S. S. Venkatesh, Opt. Eng. 23, 698 (1984).

White, A. D.

Yamaguchi, I.

Yoshimori, K.

H. Arimoto, K. Yoshimori, and K. Itoh, Opt. Commun. 170, 319 (1999).
[CrossRef]

Zhang, T.

Appl. Opt. (3)

IEEE Trans. Inf. Theory (1)

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).

Opt. Commun. (1)

H. Arimoto, K. Yoshimori, and K. Itoh, Opt. Commun. 170, 319 (1999).
[CrossRef]

Opt. Eng. (2)

A. Pu, R. Denkewalter, and D. Psaltis, Opt. Eng. 36, 2737 (1997).
[CrossRef]

D. Psaltis, E. G. Paek, and S. S. Venkatesh, Opt. Eng. 23, 698 (1984).

Opt. Lett. (3)

Other (2)

H. J. Caulfield, ed., Handbook of Optical Holography (Academic, London, 1979).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Phase-shifting interferometer for recording an in-line digital hologram of a 3D object.

Fig. 2
Fig. 2

Relation between the displacement of the hologram window and the angle of view.

Fig. 3
Fig. 3

Representation of two 3D objects reconstructed from the digital hologram at a plane orthogonal to the CCD.

Fig. 4
Fig. 4

(a) Autocorrelation and (b) cross correlation of the 3D objects represented in Fig. 3 by digital holography.

Fig. 5
Fig. 5

Conventional 2D correlation of the images of the 2D objects in Fig. 3: (a) autocorrelation, (b) cross correlation.

Fig. 6
Fig. 6

Correlation of the 3D object in Fig. 3(a) with a rotated version of the same 3D object obtained by digital holography: (a) correlation peak versus the angle of view used to measure 3D object orientation, (b) correlation for the angle giving the maximum peak.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Hox,y=AHx,yexpiϕHx,y=1iλ-Uox,y;z1z expi2πλz×expiπλzx-x2+y-y2dxdydz.
ϕHx,y-φ=arctanIx,y;-3π/2-Ix,y;-π/2Ix,y;0-Ix,y;-π.
AHx,yAR=14Ix,y;0-Ix,y;-πcosϕHx,y-φ,
Uom,n;ax,ay=expiπλdΔx2m2+Δy2n2×m=0N-1n=0N-1Hom,n;ax,ayexpiπλdΔx2m2+Δy2n2exp-i2πmmNx+nnNy,
Hom,n;ax,ay=Hom,nrectm-axbx,n-ayby×expi2πaxm+ayn,
Uom,n;ax,ay=F-1FHom,n;ax,ay×expiπλdu2ΔxNx2+v2ΔyNy2,
COPx,y;ax,ay;ax,ay=F-1FUox,y;ax,ay×F*UPx,y;ax,ay 2=F-1FHox,y;ax,ay×F*HPx,y;ax,ay2.

Metrics