Abstract

It is predicted numerically that soliton generation by four-wave mixing when the central wavelength of the initial pulse is below the zero-dispersion point of a nonlinear waveguide can be significantly boosted by shock-wave formation that reduces the launching power and extends the efficiency of that process deep inside the normal-dispersion region. Experimental evidence of the validity of this prediction is provided by spectral phase and intensity measurement of the propagated bound-state pulse.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
    [CrossRef] [PubMed]
  2. M. Desaix, D. Anderson, and M. Lisak, Opt. Lett. 15, 18 (1990).
    [CrossRef] [PubMed]
  3. P. Beaud, W. Hödel, and H. P. Weber, IEEE J. Quantum Electron. QE-23, 1938 (1987).
    [CrossRef]
  4. G. Boyer, Opt. Lett. 24, 945 (1999).
    [CrossRef]
  5. E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, JETP Lett. 42, 87 (1985).
  6. E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, Sov. Phys. Dokl. 31, 494 (1986).
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  8. M. Potasek, Opt. Lett. 12, 921 (1987).
    [CrossRef] [PubMed]
  9. P. L. François, “Propagation linéaire et non linéaire dans les fibres optiques,” Ph.D. dissertation (Université de Montpellier, France, 1993).
  10. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  11. G. R. Boyer and X. F. Carlotti, Phys. Rev. A 38, 5140 (1988).
    [CrossRef] [PubMed]
  12. J. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
    [CrossRef]

1999

1991

J. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

1990

1989

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

1988

G. R. Boyer and X. F. Carlotti, Phys. Rev. A 38, 5140 (1988).
[CrossRef] [PubMed]

1987

1986

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, Sov. Phys. Dokl. 31, 494 (1986).

1985

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, JETP Lett. 42, 87 (1985).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Anderson, D.

Beaud, P.

P. Beaud, W. Hödel, and H. P. Weber, IEEE J. Quantum Electron. QE-23, 1938 (1987).
[CrossRef]

Blow, K. J.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Boyer, G.

Boyer, G. R.

G. R. Boyer and X. F. Carlotti, Phys. Rev. A 38, 5140 (1988).
[CrossRef] [PubMed]

Carlotti, X. F.

G. R. Boyer and X. F. Carlotti, Phys. Rev. A 38, 5140 (1988).
[CrossRef] [PubMed]

Chen, H. H.

Chilla, J.

J. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Desaix, M.

Dianov, E. M.

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, Sov. Phys. Dokl. 31, 494 (1986).

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, JETP Lett. 42, 87 (1985).

François, P. L.

P. L. François, “Propagation linéaire et non linéaire dans les fibres optiques,” Ph.D. dissertation (Université de Montpellier, France, 1993).

Golovchenko, E. A.

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, Sov. Phys. Dokl. 31, 494 (1986).

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, JETP Lett. 42, 87 (1985).

Hödel, W.

P. Beaud, W. Hödel, and H. P. Weber, IEEE J. Quantum Electron. QE-23, 1938 (1987).
[CrossRef]

Lee, Y. C.

Lisak, M.

Martinez, O. E.

J. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Menyuk, C. R.

Potasek, M.

Prokorov, A. M.

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, Sov. Phys. Dokl. 31, 494 (1986).

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, JETP Lett. 42, 87 (1985).

Serkin, V. N.

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, Sov. Phys. Dokl. 31, 494 (1986).

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, JETP Lett. 42, 87 (1985).

Wai, P. K.

Weber, H. P.

P. Beaud, W. Hödel, and H. P. Weber, IEEE J. Quantum Electron. QE-23, 1938 (1987).
[CrossRef]

Wood, D.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

IEEE J. Quantum Electron.

P. Beaud, W. Hödel, and H. P. Weber, IEEE J. Quantum Electron. QE-23, 1938 (1987).
[CrossRef]

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

J. Chilla and O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

JETP Lett.

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, JETP Lett. 42, 87 (1985).

Opt. Lett.

Phys. Rev. A

G. R. Boyer and X. F. Carlotti, Phys. Rev. A 38, 5140 (1988).
[CrossRef] [PubMed]

Sov. Phys. Dokl.

E. A. Golovchenko, E. M. Dianov, A. M. Prokorov, and V. N. Serkin, Sov. Phys. Dokl. 31, 494 (1986).

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

P. L. François, “Propagation linéaire et non linéaire dans les fibres optiques,” Ph.D. dissertation (Université de Montpellier, France, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top row, simulation of propagation over 13 m of an initially sech2 70-fs FWHM, 6.6-kW peak-power optical pulse by use of the shock-term-extended nonlinear Schrödinger equation. The time profile shows 125-fs FWHM subpulse formation owing to self-steepening, in contrast to what occurs in (bottom row) the simulation of Eq. (1) when the shock term is omitted.

Fig. 2
Fig. 2

Solid curve, simulated peak-power variations versus dispersion coefficient β2 for an initially sech2 60-fs FWHM, 6.7-kW peak-power unchirped pulse, with the other parameters the same as in Fig. 1. Dashed–dotted curve, variations for the unrealistic case in which self-steepening is omitted in Eq. (1). Dotted curve, the picosecond regime, in which the second- and third-order terms are of the same order of magnitude and Raman scattering and self-steepening are negligible.

Fig. 3
Fig. 3

Output spectrum of an initially unchirped pulse sech2 70 fs after 13-m propagation. The vertical dotted lines delimit the band for which the time delay was measured to be constant, indicating that the corresponding pulse is a bound state. The fiber parameters are given in the text.

Fig. 4
Fig. 4

Autocorrelation trace of a femtosecond subpulse whose spectrum is on the Stokes side of Fig. 3 for the same parameters as in Fig. 1. The time width is 170 fs, assuming a deconvolution factor of 1.55. The sidelobes are assumed to be due to a subpulse precursor (see Fig. 1).

Tables (1)

Tables Icon

Table 1 Time-Delay Dispersion of the Nonspreading Pulse Components

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

iaz-12LD2aT2-i16LD3aT3+aLNLa2-aTRLNLT0a2T+i2QLNLω0T0aa2T=0.
P0T02=-1γβ2+0.27β3β2T02.

Metrics