Abstract

We exploit nonlinear propagation in photorefractive crystals to observe the phenomenology associated with the collision and interaction of solitons of different tranverse dimensions: a self-trapped stripe and a round soliton. Along with evidence of particlelike behavior, our results indicate the emergence of a new phenomenology related to the hybrid-dimensional system.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, Opt. Lett. 8, 596 (1982).
    [CrossRef]
  2. F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
    [CrossRef]
  3. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, Opt. Lett. 16, 15 (1991).
    [CrossRef] [PubMed]
  4. S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fiber. Technol. 1, 187 (1995).
    [CrossRef]
  5. K. A. Gorshkov and L. A. Ostrovsky, Physica D 3, 428 (1981).
    [CrossRef]
  6. A. W. Snyder and A. P. Sheppard, Opt. Lett. 18, 482 (1993).
    [CrossRef] [PubMed]
  7. M. Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996).
    [CrossRef]
  8. H. Meng, G. Salamo, M. Shih, and M. Segev, Opt. Lett. 22, 448 (1997).
    [CrossRef] [PubMed]
  9. G. S. Garcia-Quirino, M. D. Iturbe-Castillo, V. A. Vysloukh, J. J. Sánchez-Mondragón, S. I. Stepanov, G. Lugo-Martinez, and G. E. Torres-Cisneros, Opt. Lett. 22, 154 (1997).
    [CrossRef]
  10. A. V. Mamaev, M. Saffman, and A. A. Zozulya, J. Opt. Soc. Am. B 15, 2079 (1998).
    [CrossRef]
  11. M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996).
    [CrossRef]
  12. E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Rafaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
    [CrossRef]
  13. E. DelRe, M. Tamburrini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
    [CrossRef]
  14. W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, Phys. Rev. Lett. 80, 3240 (1998).
    [CrossRef]
  15. E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).
    [CrossRef]
  16. D. Marcuse, J. Lightwave Technol. 7, 122 (1989).
    [CrossRef]
  17. S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, Opt. Lett. 24, 475 (1999).
    [CrossRef]

1999

1998

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Rafaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, Phys. Rev. Lett. 80, 3240 (1998).
[CrossRef]

A. V. Mamaev, M. Saffman, and A. A. Zozulya, J. Opt. Soc. Am. B 15, 2079 (1998).
[CrossRef]

1997

1996

M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996).
[CrossRef]

M. Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996).
[CrossRef]

1995

S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fiber. Technol. 1, 187 (1995).
[CrossRef]

1993

1991

1990

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

1989

D. Marcuse, J. Lightwave Technol. 7, 122 (1989).
[CrossRef]

1986

E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).
[CrossRef]

1982

1981

K. A. Gorshkov and L. A. Ostrovsky, Physica D 3, 428 (1981).
[CrossRef]

Aceves, A. B.

S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fiber. Technol. 1, 187 (1995).
[CrossRef]

Agranat, A. J.

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Rafaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

Aitchison, J. S.

Barthelemy, A.

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

Chen, Z.

S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, Opt. Lett. 24, 475 (1999).
[CrossRef]

M. Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996).
[CrossRef]

Christodoulides, D. N.

M. Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996).
[CrossRef]

Coskun, T. H.

M. Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996).
[CrossRef]

Crosignani, B.

DelRe, E.

Denz, C.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, Phys. Rev. Lett. 80, 3240 (1998).
[CrossRef]

Garcia-Quirino, G. S.

Gordon, J. P.

Gorshkov, K. A.

K. A. Gorshkov and L. A. Ostrovsky, Physica D 3, 428 (1981).
[CrossRef]

Iturbe-Castillo, M. D.

Jackel, J. L.

Kodama, Y.

S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fiber. Technol. 1, 187 (1995).
[CrossRef]

Krolikowski, W.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, Phys. Rev. Lett. 80, 3240 (1998).
[CrossRef]

Kuznetsov, E. A.

E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).
[CrossRef]

Lan, S.

Leaird, D. E.

Lugo-Martinez, G.

Luther-Davies, B.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, Phys. Rev. Lett. 80, 3240 (1998).
[CrossRef]

Mamaev, A. V.

Marcuse, D.

D. Marcuse, J. Lightwave Technol. 7, 122 (1989).
[CrossRef]

Meng, H.

Mitchell, M.

Oliver, M. K.

Ostrovsky, L. A.

K. A. Gorshkov and L. A. Ostrovsky, Physica D 3, 428 (1981).
[CrossRef]

Rafaeli, E.

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Rafaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

Reynaud, F.

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

Rubenchik, A. M.

E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).
[CrossRef]

Saffman, M.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, Phys. Rev. Lett. 80, 3240 (1998).
[CrossRef]

A. V. Mamaev, M. Saffman, and A. A. Zozulya, J. Opt. Soc. Am. B 15, 2079 (1998).
[CrossRef]

Salamo, G.

Sánchez-Mondragón, J. J.

Segev, M.

Sheppard, A. P.

Shih, M.

Silberberg, Y.

Smith, P. W. E.

Snyder, A. W.

Stepanov, S. I.

Tamburrini, M.

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Rafaeli, and A. J. Agranat, Opt. Lett. 23, 421 (1998).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

Torres-Cisneros, G. E.

Valley, G. C.

Vysloukh, V. A.

Wabnitz, S.

S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fiber. Technol. 1, 187 (1995).
[CrossRef]

Weiner, A. M.

Zakharov, V. E.

E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).
[CrossRef]

Zozulya, A. A.

Appl. Phys. Lett.

M. Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Rafaeli, and A. J. Agranat, Appl. Phys. Lett. 73, 16 (1998).
[CrossRef]

Europhys. Lett.

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

J. Lightwave Technol.

D. Marcuse, J. Lightwave Technol. 7, 122 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Fiber. Technol.

S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fiber. Technol. 1, 187 (1995).
[CrossRef]

Opt. Lett.

Phys. Rep.

E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).
[CrossRef]

Phys. Rev. Lett.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, Phys. Rev. Lett. 80, 3240 (1998).
[CrossRef]

Physica D

K. A. Gorshkov and L. A. Ostrovsky, Physica D 3, 428 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: BS’s, beam splitters; other abbreviations defined in text.

Fig. 2
Fig. 2

Hybrid working point: at T=21 C° and V=1.4 kV the crystal supports independent parallel formation of 130µm distant needle (left) and slab (right) solitons: (a) input light distribution, (b) diffracted output V=0 with Δxn,s24 µm, (c) output self-trapped light distribution.

Fig. 3
Fig. 3

Hybrid soliton collisions: (a) noninteracting case for α2.0°, (b) interacting case for α1.3°, (c) single-needle soliton, (d) single-slab soliton. Top, middle, and bottom rows: input, diffracted output at V=0, and soliton output at V=1.4 kV, respectively.

Fig. 4
Fig. 4

 Coherent interaction: (a) input, (b) output in the repulsive case Δϕ0=π, (e) output in the attractive case Δϕ0=0; (c), (d) same as (b) with needle and stripe, respectively, blocked; (f), (g) same as (e) with needle and stripe, respectively, blocked.

Fig. 5
Fig. 5

Slab–needle coherent interaction governed by Eq. (1): (a) input (amplitudes us=1.3 and un=2), (b) output at z=10 with Δϕ0=π, (c) output at z=10 with Δϕ0=0.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

iuz+12Δu+fu2u=0,

Metrics