Abstract

A nonplanar, reentrant two-spherical-mirror ring cavity is demonstrated. It is compact and free of astigmatism. Unidirectional operation is achieved by use of reciprocal and nonreciprocal polarization rotators to differentiate round-trip loss. A single-frequency green laser is generated by intracavity frequency doubling. Amplitude noise as low as 0.25% is achieved.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986).
    [CrossRef]
  2. T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
    [CrossRef] [PubMed]
  3. M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CPD-21.
  4. J. L. Nightingale and J. K. Johnson, “Single frequency ring laser with two reflecting surface,” U.S. patent5,052,815 (October1, 1991).
  5. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997), Chap. 2.2.
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 15.
  7. D. Chen, C. L. Fincher, D. A. Hinkley, R. A. Chodzko, T. S. Rose, and R. A. Fields, Opt. Lett. 20, 1283 (1995).
    [CrossRef] [PubMed]
  8. W. L. Wu and S. L. Huang, IEEE Photon. Technol. Lett. 10, 851 (1998).
    [CrossRef]
  9. S. L. Huang, W. L. Wu, and P. L. Huang, Appl. Phys. Lett. 73, 3342 (1998).
    [CrossRef]

1998 (2)

W. L. Wu and S. L. Huang, IEEE Photon. Technol. Lett. 10, 851 (1998).
[CrossRef]

S. L. Huang, W. L. Wu, and P. L. Huang, Appl. Phys. Lett. 73, 3342 (1998).
[CrossRef]

1995 (1)

1986 (1)

1985 (1)

Baer, T.

Byer, R. L.

Chen, D.

Chodzko, R. A.

Fields, R. A.

Fincher, C. L.

Frangineas, G.

M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CPD-21.

Hinkley, D. A.

Huang, P. L.

S. L. Huang, W. L. Wu, and P. L. Huang, Appl. Phys. Lett. 73, 3342 (1998).
[CrossRef]

Huang, S. L.

S. L. Huang, W. L. Wu, and P. L. Huang, Appl. Phys. Lett. 73, 3342 (1998).
[CrossRef]

W. L. Wu and S. L. Huang, IEEE Photon. Technol. Lett. 10, 851 (1998).
[CrossRef]

Johnson, J. K.

J. L. Nightingale and J. K. Johnson, “Single frequency ring laser with two reflecting surface,” U.S. patent5,052,815 (October1, 1991).

Johnston, T. J.

M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CPD-21.

Kane, T. J.

Negus, D. K.

M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CPD-21.

Nightingale, J. L.

M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CPD-21.

J. L. Nightingale and J. K. Johnson, “Single frequency ring laser with two reflecting surface,” U.S. patent5,052,815 (October1, 1991).

Rose, T. S.

Selker, M. D.

M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CPD-21.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 15.

Wu, W. L.

S. L. Huang, W. L. Wu, and P. L. Huang, Appl. Phys. Lett. 73, 3342 (1998).
[CrossRef]

W. L. Wu and S. L. Huang, IEEE Photon. Technol. Lett. 10, 851 (1998).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997), Chap. 2.2.

Appl. Phys. Lett. (1)

S. L. Huang, W. L. Wu, and P. L. Huang, Appl. Phys. Lett. 73, 3342 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. L. Wu and S. L. Huang, IEEE Photon. Technol. Lett. 10, 851 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (4)

M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CPD-21.

J. L. Nightingale and J. K. Johnson, “Single frequency ring laser with two reflecting surface,” U.S. patent5,052,815 (October1, 1991).

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997), Chap. 2.2.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the noncoplanar ring laser. Beam paths (a), (b), and (c) are viewed along the y, x, and z axes, respectively. O/C, output coupler.

Fig. 2
Fig. 2

The power that passed through the polarization analyzer was measured with and without a magnetic field present. As the direction of the magnet is reversed, the transmitted power decreases. The solid lines are the average values for 50 samplings.

Fig. 3
Fig. 3

IR output λ=1.046 µm characteristics for the reentrant nonplanar two-mirror ring laser. Both mirrors were antireflection coated at 808 and 532 nm and high-reflection (99.8%) coated at 1.064 µm. The filled circles are the data points without the magnetic field, and the filled triangles are those with the magnetic field present. The solid lines are the curve-fitted results.

Fig. 4
Fig. 4

Amplitude noise of the single-frequency green laser. The inset shows the single-frequency operation of the nonplanar figure-eight cavity.

Fig. 5
Fig. 5

Normalized cavity length L/R as a function of sin-1d/R for different beam paths. Decreasing the cavity length as the half-width is kept constant switches the beam path from a nonplanar figure eight to a triangular beam path.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L=2R-R2-d2,
A+D2=1     in the plane perpendicular to the plane of incidence, A+D2=22 cos2θcos4 θ-32-1     in the plane of incidence,

Metrics