Abstract

By combining second-harmonic generation and wave-front correction of a hybrid Ti:sapphire–Nd:glass terawatt laser chain, we were able to generate a focused intensity above 1019 W/cm2, with an estimated 109:1 intensity contrast ratio. The frequency of the laser is doubled by use of a type I KDP crystal, and wave-front correction is achieved with a deformable mirror coupled to a wave-front sensor.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, and G. Mourou, Opt. Lett. 23, 13 (1998).
    [CrossRef]
  3. J. Primot, Appl. Opt. 32, 6242 (1993).
    [CrossRef] [PubMed]
  4. J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
    [CrossRef]
  5. C. Y. Chien, G. Korn, J. S. Coe, J. Squier, G. Mourou, and R. S. Craxton, Opt. Lett. 20, 353 (1995).
    [CrossRef]
  6. Y. Wang and D. Dragila, Phys. Rev. A 41, 5645 (1990).
    [CrossRef] [PubMed]
  7. R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
    [CrossRef]
  8. J. C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J. P. Huignard, Opt. Lett. 23, 475 (1998).
    [CrossRef]
  9. M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, England, 1993).

1998 (2)

1997 (1)

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

1995 (1)

1993 (1)

1990 (1)

Y. Wang and D. Dragila, Phys. Rev. A 41, 5645 (1990).
[CrossRef] [PubMed]

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

1981 (1)

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

Baldis, H.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, England, 1993).

Chanteloup, J. C.

Chériaux, G.

Chien, C. Y.

Coe, J. S.

Craxton, R. S.

Dragila, D.

Y. Wang and D. Dragila, Phys. Rev. A 41, 5645 (1990).
[CrossRef] [PubMed]

Druon, F.

Faure, J.

Fracasso, B.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

Heggarty, K.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

Huignard, J. P.

Korn, G.

Loiseaux, B.

Maksimchuk, A.

Migus, A.

Mourou, G.

Nantel, M.

Nees, J.

Primot, J.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

J. Primot, Appl. Opt. 32, 6242 (1993).
[CrossRef] [PubMed]

Sogno, L.

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

Squier, J.

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Wang, Y.

Y. Wang and D. Dragila, Phys. Rev. A 41, 5645 (1990).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, England, 1993).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

Opt. Commun. (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Eng. (1)

J. Primot, L. Sogno, B. Fracasso, and K. Heggarty, Opt. Eng. 36, 901 (1997).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

Y. Wang and D. Dragila, Phys. Rev. A 41, 5645 (1990).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, England, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for SHG. The laser pulse is frequency doubled by the KDP crystal and then goes through color filter C. The wave front is corrected with a deformable mirror (DM). When mirror M1 is in place, the beam goes to dump mirrors M2 and M3 and then to the wave-front sensor (ATWLSI). After correction of the wave front, the mirror is removed and the beam goes to the parabola.

Fig. 2
Fig. 2

Conversion efficiency of SHG versus the energy of the fundamental pulse. The solid curve is the best polynomial fit to the experimental data.

Fig. 3
Fig. 3

Single-shot autocorrelation trace of the second harmonic with the FWHM of 510±10 fs. Assuming a Gaussian shape, the pulse duration is 360±10 fs.

Fig. 4
Fig. 4

Measured phase distortions owing to nonlinear effects in the doubling crystal. The wave front presents 0.5λ aberrations peak to valley and is the result of the subtraction of a high-energy (2 J of fundamental) and a low-energy (50 mJ) wave front.

Fig. 5
Fig. 5

Experimental phase measured with ATWLSI. (a) Wave front of the fundamental without any correction (peak to valley, 1.1λ). (b) Corrected phase (rms value, λ/20). (c) Original and (d) corrected phases of the second harmonic of the laser. From 2.2λ aberration, the wave front is corrected to 0.6λ peak to valley and a rms of λ/10. This correction represents a gain of 8 in focused intensity.

Metrics