Abstract

A dual-echelon technique for performing real-time pump–probe spectroscopy with sub-100-fs temporal resolution is demonstrated. In a single laser shot, measurements at 400 different temporal delays are recorded to cover a total temporal range of 10 ps in 25-fs steps. Data from a glass sample and an explosive single crystal, each irradiated with intensity above the permanent damage threshold, are presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dhar, J. T. Fourkas, and K. A. Nelson, Opt. Lett. 19, 643 (1994).
    [CrossRef] [PubMed]
  2. Z. P. Jiang and X. C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
    [CrossRef]
  3. D. D. Chung, “Femtosecond pump-probe spectroscopy of chemical reactions in liquids and crystals,” Ph.D. dissertation (Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 1998).
  4. M. R. Topp, P. M. Rentzepis, and R. P. Jones, J. Appl. Phys. 42, 3415 (1971).
    [CrossRef]
  5. M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).
    [CrossRef] [PubMed]
  6. A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
    [CrossRef]
  7. V. A. Apkarian and N. Schwentner, Chem. Rev. 99, 1481 (1999).
    [CrossRef]
  8. Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).

1999 (2)

A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
[CrossRef]

V. A. Apkarian and N. Schwentner, Chem. Rev. 99, 1481 (1999).
[CrossRef]

1998 (1)

Z. P. Jiang and X. C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[CrossRef]

1994 (1)

1987 (2)

M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).
[CrossRef] [PubMed]

Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).

1971 (1)

M. R. Topp, P. M. Rentzepis, and R. P. Jones, J. Appl. Phys. 42, 3415 (1971).
[CrossRef]

Apkarian, V. A.

V. A. Apkarian and N. Schwentner, Chem. Rev. 99, 1481 (1999).
[CrossRef]

Auston, D. H.

M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).
[CrossRef] [PubMed]

Backus, S.

A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
[CrossRef]

Capasso, F.

M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).
[CrossRef] [PubMed]

Chung, D. D.

D. D. Chung, “Femtosecond pump-probe spectroscopy of chemical reactions in liquids and crystals,” Ph.D. dissertation (Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 1998).

Dhar, L.

Fourkas, J. T.

Jiang, Z. P.

Z. P. Jiang and X. C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[CrossRef]

Jones, R. P.

M. R. Topp, P. M. Rentzepis, and R. P. Jones, J. Appl. Phys. 42, 3415 (1971).
[CrossRef]

Kapteyn, H. C.

A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
[CrossRef]

Mourou, G.

A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
[CrossRef]

Murnane, M. M.

A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
[CrossRef]

Nelson, K. A.

L. Dhar, J. T. Fourkas, and K. A. Nelson, Opt. Lett. 19, 643 (1994).
[CrossRef] [PubMed]

Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).

Nuss, M. C.

M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).
[CrossRef] [PubMed]

Rentzepis, P. M.

M. R. Topp, P. M. Rentzepis, and R. P. Jones, J. Appl. Phys. 42, 3415 (1971).
[CrossRef]

Schwentner, N.

V. A. Apkarian and N. Schwentner, Chem. Rev. 99, 1481 (1999).
[CrossRef]

Tien, A. C.

A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
[CrossRef]

Topp, M. R.

M. R. Topp, P. M. Rentzepis, and R. P. Jones, J. Appl. Phys. 42, 3415 (1971).
[CrossRef]

Yan, Y. X.

Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).

Zhang, X. C.

Z. P. Jiang and X. C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

Z. P. Jiang and X. C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[CrossRef]

Chem. Rev. (1)

V. A. Apkarian and N. Schwentner, Chem. Rev. 99, 1481 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. R. Topp, P. M. Rentzepis, and R. P. Jones, J. Appl. Phys. 42, 3415 (1971).
[CrossRef]

J. Chem. Phys. (1)

Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).

Opt. Lett. (1)

Phys. Rev. Lett. (2)

M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).
[CrossRef] [PubMed]

A. C. Tien, S. Backus, H. C. Kapteyn, M. M. Murnane, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).
[CrossRef]

Other (1)

D. D. Chung, “Femtosecond pump-probe spectroscopy of chemical reactions in liquids and crystals,” Ph.D. dissertation (Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the basic echelon experimental apparatus. The probe beam, which has a large transverse profile, passes through the echelons and is converted into 400 probe beams. These beams then pass through a two-lens telescope. At the focal plane of the telescope the beams are focused to a single spot on the sample. The CCD is placed in the plane at which the echelons are imaged by the telescope. The pump beam is focused onto the sample by a separate lens, off axis from the probe beams.

Fig. 2
Fig. 2

Schematic of the echelon optics. The two echelons have step thicknesses of 300 and 15 µm, leading to optical delays of 500 and 25 fs, respectively. Each echelon has 20 steps, giving a total temporal range of 10 ps.

Fig. 3
Fig. 3

Data recorded from a glass coverslip sample. (a) Image of the transmission of the probe light through the sample without any excitation pulse present. (b) Image of the transmission of the probe light through the sample with an excitation pulse whose intensity exceeds the dielectric breakdown threshold. (c) Plot of the temporal response obtained from the image in (b), normalized by the image in (a), averaged over ten such measurements. Data points from pixels on the CCD horizontal edges have been corrected as described in the text.

Fig. 4
Fig. 4

Data recorded from a single crystal of the explosive 1,3,3-trinitroazetidine. (a), (b), and (c) are the same as in Fig. 3, except that the plot in (c) is from only one measurement.

Metrics