Abstract

A method for measuring laser seeding efficiencies by use of group-velocity dispersion has been developed. By tuning the laser near a resonance in an atomic-vapor filter it is possible to temporally decouple the seeded (narrow-band) light from the unseeded (broadband) light. We measured a seeding efficiency of 99.8% of the third harmonic of an injection-seeded Ti:sapphire laser. A model for the observed dispersion has been developed and tested. The group-velocity dispersion in the filter may also be used to chirp pulses for spectral analysis in the time domain.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hoffman, K.-U. Munch, and A. Leipertz, Opt. Lett. 21, 525 (1996).
    [CrossRef] [PubMed]
  2. J. Altmann, R. Baumgart, and C. Weitkamp, Appl. Opt. 20, 995 (1981).
    [CrossRef] [PubMed]
  3. D. Grischkowsy, Phys. Rev. A 7, 2096 (1973).
    [CrossRef]
  4. A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, Phys. Rev. A 53, 4547 (1996).
    [CrossRef] [PubMed]
  5. D. L’Hermite, M. Comte, O. Gobert, and J. de Lamare, Opt. Commun. 155, 270 (1998).
    [CrossRef]
  6. R. S. Longhurst, Geometrical and Physical Optics (Longman, London, 1967), p. 458.
  7. N. D. Finkelstein, A. P. Yalin, W. R. Lempert, and R. B. Miles, Opt. Lett. 23, 1615 (1998).
    [CrossRef]
  8. N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, and G. Rines, AIAA Pap. 96-0301 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).
  9. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

1998 (2)

D. L’Hermite, M. Comte, O. Gobert, and J. de Lamare, Opt. Commun. 155, 270 (1998).
[CrossRef]

N. D. Finkelstein, A. P. Yalin, W. R. Lempert, and R. B. Miles, Opt. Lett. 23, 1615 (1998).
[CrossRef]

1996 (2)

D. Hoffman, K.-U. Munch, and A. Leipertz, Opt. Lett. 21, 525 (1996).
[CrossRef] [PubMed]

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, Phys. Rev. A 53, 4547 (1996).
[CrossRef] [PubMed]

1981 (1)

1973 (1)

D. Grischkowsy, Phys. Rev. A 7, 2096 (1973).
[CrossRef]

Altmann, J.

Baumgart, R.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Comte, M.

D. L’Hermite, M. Comte, O. Gobert, and J. de Lamare, Opt. Commun. 155, 270 (1998).
[CrossRef]

de Lamare, J.

D. L’Hermite, M. Comte, O. Gobert, and J. de Lamare, Opt. Commun. 155, 270 (1998).
[CrossRef]

Finch, A.

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, and G. Rines, AIAA Pap. 96-0301 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Finkelstein, N. D.

N. D. Finkelstein, A. P. Yalin, W. R. Lempert, and R. B. Miles, Opt. Lett. 23, 1615 (1998).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, and G. Rines, AIAA Pap. 96-0301 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Gobert, O.

D. L’Hermite, M. Comte, O. Gobert, and J. de Lamare, Opt. Commun. 155, 270 (1998).
[CrossRef]

Grischkowsy, D.

D. Grischkowsy, Phys. Rev. A 7, 2096 (1973).
[CrossRef]

Harris, S. E.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, Phys. Rev. A 53, 4547 (1996).
[CrossRef] [PubMed]

Hoffman, D.

Jain, M.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, Phys. Rev. A 53, 4547 (1996).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, Phys. Rev. A 53, 4547 (1996).
[CrossRef] [PubMed]

L’Hermite, D.

D. L’Hermite, M. Comte, O. Gobert, and J. de Lamare, Opt. Commun. 155, 270 (1998).
[CrossRef]

Leipertz, A.

Lempert, W. R.

N. D. Finkelstein, A. P. Yalin, W. R. Lempert, and R. B. Miles, Opt. Lett. 23, 1615 (1998).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, and G. Rines, AIAA Pap. 96-0301 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Longhurst, R. S.

R. S. Longhurst, Geometrical and Physical Optics (Longman, London, 1967), p. 458.

Miles, R. B.

N. D. Finkelstein, A. P. Yalin, W. R. Lempert, and R. B. Miles, Opt. Lett. 23, 1615 (1998).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, and G. Rines, AIAA Pap. 96-0301 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Munch, K.-U.

Rines, G.

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, and G. Rines, AIAA Pap. 96-0301 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Weitkamp, C.

Yalin, A. P.

Yin, G. Y.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, Phys. Rev. A 53, 4547 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Opt. Commun. (1)

D. L’Hermite, M. Comte, O. Gobert, and J. de Lamare, Opt. Commun. 155, 270 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

D. Grischkowsy, Phys. Rev. A 7, 2096 (1973).
[CrossRef]

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, Phys. Rev. A 53, 4547 (1996).
[CrossRef] [PubMed]

Other (3)

R. S. Longhurst, Geometrical and Physical Optics (Longman, London, 1967), p. 458.

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, and G. Rines, AIAA Pap. 96-0301 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Modeled delay time (dashed curve) and modeled transmission (solid curve) for the 5-cm mercury-vapor filter near 253.7 nm. The multiple peaks are due to both isotopic abundance and hyperfine splitting. (b) Oscilloscope trace showing the narrow-band light delayed relative to the broadband light as well as a sum of two Gaussians fitted to the data. The laser frequency in (b) is marked by an arrow in (a).

Fig. 2
Fig. 2

Narrow-band (delayed) and broadband (undelayed) light intensities as the laser frequency is tuned from -16 GHz (within the absorption notch) to -150 GHz (far from the absorption). Within the absorption notch, the narrow-band component is strongly attenuated, and only the broadband component can be detected. The narrow-band (delayed) intensity agrees with the model (shown as a solid curve). Far from resonance, both components propagate through the filter with approximately the same speed and with no attenuation. The ratio of the broadband signal to the transmission signal measured far from resonance gives the seeding efficiency.

Fig. 3
Fig. 3

Pulse chirping capability of the filter. The first (undelayed) peak of the oscilloscope trace is due to the broadband light, and the two delayed peaks are due to the two different frequency components (separated by 2.3 GHz) within the same pulse. Also shown are three Gaussian peaks and their sum fitted to the data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Vgω=cn+ωdndω,
n=1-e22MeNf10ω2-ω02ω2-ω022+ω2γ2,
Tdelayω=LVgω-Lc,
seeding efficiency=1-fraction of broadband light in pulse=1-broadband signal/total transmission signal=0.998±0.0002.

Metrics