Abstract

We present experiments that show that gray tracking modifies the parametric gain and the generated wavelengths of a KTP optical parametric oscillator pumped at 532 nm near degeneracy. These perturbations occur over a limited range of pump intensity. We propose a satisfactory model that takes into account photochromic damage, the thermo-optical effect, and the combined processes of creation and saturation of a two-photon absorber at 532 nm. The temperature dependence of Sellmeier equations of KTP is also established at 20–200 °C.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
    [CrossRef]
  2. K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
    [CrossRef]
  3. C. A. Ebbers and S. P. Velsko, Proc. SPIE 2700, 227 (1996).
    [CrossRef]
  4. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, Opt. Lett. 18, 1208 (1993).
    [CrossRef] [PubMed]
  5. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
    [CrossRef]
  6. L. Tarassov, ed., Physique des Processus dans les Générateurs de Rayonnement Optique Cohérent (Mir, Moscow, 1985), pp. 309–310.
  7. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, Opt. Lett. 18, 194 (1993).
    [CrossRef]

1999

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

1996

C. A. Ebbers and S. P. Velsko, Proc. SPIE 2700, 227 (1996).
[CrossRef]

1993

1991

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

1990

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

DeSalvo, R.

Ebbers, C. A.

C. A. Ebbers and S. P. Velsko, Proc. SPIE 2700, 227 (1996).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Fève, J. P.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Fukui, T.

Hagan, D. J.

Kato, K.

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

Kubota, S.

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Masuda, H.

W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, Opt. Lett. 18, 1208 (1993).
[CrossRef] [PubMed]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Ménaert, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Said, A. A.

Sheik-Bahae, M.

Van Stryland, E. W.

Velsko, S. P.

C. A. Ebbers and S. P. Velsko, Proc. SPIE 2700, 227 (1996).
[CrossRef]

Wiechmann, W.

IEEE J. Quantum Electron.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Opt. Lett.

Proc. SPIE

C. A. Ebbers and S. P. Velsko, Proc. SPIE 2700, 227 (1996).
[CrossRef]

Other

L. Tarassov, ed., Physique des Processus dans les Générateurs de Rayonnement Optique Cohérent (Mir, Moscow, 1985), pp. 309–310.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured and calculated average power emitted at both signal and idler wavelengths as a function of the 532-nm peak intensity at room temperature.

Fig. 2
Fig. 2

Measured and calculated average power emitted at both signal and idler wavelengths as a function of the 532-nm peak intensity at 195 °C.

Fig. 3
Fig. 3

Idler λi and signal λs wavelengths emitted at 22 and 195 °C versus 532-nm peak intensity. The dashed lines are guides for the eye.

Tables (1)

Tables Icon

Table 1 Parameters of the Temperature-Dependent Sellmeier Equations for KTP Valid for 20–200 °Ca

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

αI=αnir+αaCI,CI=1-1+exp-I0/A21+exp[I2-I02/A2)],
ni2λ,T=ai+βiT2-400+bi+δiT2-400λ2-ci+ϕiT2-400-di+ρiT2-400λ2.
βI=βmaxCISI, SI=11+I/Ih2,

Metrics