Abstract

We propose and demonstrate a scheme for generating synchronized chaotic mode hopping in two wavelength-tunable lasers whose tuning range covers multiple longitudinal modes. Chaotic mode hopping resulting in large hops in wavelength is induced by delayed electrical feedback. We show that, by coupling part of the output of one laser into another, one can synchronize the chaotic mode hopping of two separate lasers and obtain synchronized chaotic on–off modulation patterns in multiple corresponding wavelength bands.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983).
    [Crossref]
  2. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
    [Crossref] [PubMed]
  3. K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
    [Crossref] [PubMed]
  4. G. D. Van Wiggeren and R. Roy, Science 279, 1198 (1998).
    [Crossref]
  5. J. P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
    [Crossref]
  6. S. Sivaprakasam and K. A. Shore, Opt. Lett. 24, 466 (1999).
    [Crossref]
  7. K. Ikeda and K. Matsumoto, Physica D 29, 23 (1987).
    [Crossref]
  8. A. Tsigopoulos, T. Sphicopoulos, I. Organos, and S. Pantelis, IEEE J. Quantum Electron. 28, 415 (1992).
    [Crossref]

1999 (1)

1998 (2)

G. D. Van Wiggeren and R. Roy, Science 279, 1198 (1998).
[Crossref]

J. P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[Crossref]

1993 (1)

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref] [PubMed]

1992 (1)

A. Tsigopoulos, T. Sphicopoulos, I. Organos, and S. Pantelis, IEEE J. Quantum Electron. 28, 415 (1992).
[Crossref]

1990 (1)

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref] [PubMed]

1987 (1)

K. Ikeda and K. Matsumoto, Physica D 29, 23 (1987).
[Crossref]

1983 (1)

H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983).
[Crossref]

Carroll, T. L.

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref] [PubMed]

Cuomo, K. M.

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref] [PubMed]

Fujisaka, H.

H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983).
[Crossref]

Goedgebuer, J. P.

J. P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[Crossref]

Ikeda, K.

K. Ikeda and K. Matsumoto, Physica D 29, 23 (1987).
[Crossref]

Larger, L.

J. P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[Crossref]

Matsumoto, K.

K. Ikeda and K. Matsumoto, Physica D 29, 23 (1987).
[Crossref]

Oppenheim, A. V.

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref] [PubMed]

Organos, I.

A. Tsigopoulos, T. Sphicopoulos, I. Organos, and S. Pantelis, IEEE J. Quantum Electron. 28, 415 (1992).
[Crossref]

Pantelis, S.

A. Tsigopoulos, T. Sphicopoulos, I. Organos, and S. Pantelis, IEEE J. Quantum Electron. 28, 415 (1992).
[Crossref]

Pecora, L. M.

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref] [PubMed]

Porte, H.

J. P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[Crossref]

Roy, R.

G. D. Van Wiggeren and R. Roy, Science 279, 1198 (1998).
[Crossref]

Shore, K. A.

Sivaprakasam, S.

Sphicopoulos, T.

A. Tsigopoulos, T. Sphicopoulos, I. Organos, and S. Pantelis, IEEE J. Quantum Electron. 28, 415 (1992).
[Crossref]

Tsigopoulos, A.

A. Tsigopoulos, T. Sphicopoulos, I. Organos, and S. Pantelis, IEEE J. Quantum Electron. 28, 415 (1992).
[Crossref]

Van Wiggeren, G. D.

G. D. Van Wiggeren and R. Roy, Science 279, 1198 (1998).
[Crossref]

Yamada, T.

H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Tsigopoulos, T. Sphicopoulos, I. Organos, and S. Pantelis, IEEE J. Quantum Electron. 28, 415 (1992).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref] [PubMed]

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref] [PubMed]

J. P. Goedgebuer, L. Larger, and H. Porte, Phys. Rev. Lett. 80, 2249 (1998).
[Crossref]

Physica D (1)

K. Ikeda and K. Matsumoto, Physica D 29, 23 (1987).
[Crossref]

Prog. Theor. Phys. (1)

H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 (1983).
[Crossref]

Science (1)

G. D. Van Wiggeren and R. Roy, Science 279, 1198 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of experimental setup for synchronization of chaotic wavelength hopping: id, offset DBR current; ip, phase-control current; if, laser-diode (LD) pump injection current; , coupling coefficient. The total laser output is measured at A before the wavelength filter. Tr, time delay; PD’s, photodiodes.

Fig. 2
Fig. 2

(a) Wavelength-tuning characteristics of the DBR laser diode and (b) optical spectrum of the laser in the state of chaos.

Fig. 3
Fig. 3

Typical waveforms of the synchronized master and slave systems at id=15 mA and λc=1550 nm. All traces are on the same relative scale. (a) Waveforms of the system output and mode 1 λ=1548.25 nm. (b) Waveforms of the system output and mode 4 λ=1550.51 nm.

Metrics