Abstract

What is to the authors’ knowledge the first experimental demonstration of a nonresonant cw Raman laser pumped by a tunable external-cavity diode laser (ECDL) is presented. The ECDL is phase-frequency locked to a high-finesse Raman laser cavity containing diatomic hydrogen H2 by the Pound–Drever–Hall locking technique. The Stokes lasing threshold occurs at a pump power of 400±30 µW, and a maximum photon conversion efficiency of 12.0±1.3% is achieved at 1.6 mW of pump power. A 40-nm tuning range of the cw Stokes emission, 1174–1214 nm, is obtained by tuning of the wavelength of the ECDL pump source.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, Opt. Lett. 23, 367 (1998).
    [CrossRef]
  2. K. S. Repasky, L. E. Watson, and J. L. Carlsten, Appl. Opt. 34, 2615 (1995).
    [CrossRef] [PubMed]
  3. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, Opt. Lett. 24, 1130 (1999).
    [CrossRef]
  4. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  5. T. Day, M. Brownell, and I. F. Wu, Proc. SPIE 2378, 35 (1995).
    [CrossRef]
  6. W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).
    [CrossRef] [PubMed]
  7. Below the Stokes threshold, the reflected pump power Pr and the transmitted pump power Pt are both linear functions of the incident pump power: Pr=BrPi0 and Pt=BtPi0, where Br=R1-T-R2/1-R2C+R1-C and Bt=T2/1-R2C are two constants related to mirror reflectivity R, transmission T, and cavity coupling efficiency C. From the data below threshold in Fig. 2, we found that Br=0.318±0.0007 and Bt=0.476±0.001. Using R=0.99996±0.00001 measured from cavity ringdown, we can calculate that T=33±0.1×10-6 and C=70.4±0.2%.
  8. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, J. Opt. Soc. Am. B 15, 1667 (1998).
    [CrossRef]
  9. K. S. Repasky, L. Meng, J. K. Brasseur, J. L. Carlsten, and R. C. Swanson, J. Opt. Soc. Am. B 16, 717 (1999).
    [CrossRef]
  10. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, J. Opt. Soc. Am. B 16, 1305 (1999).
    [CrossRef]
  11. G. Rempe, R. J. Thompson, and H. J. Kimble, Opt. Lett. 17, 363 (1992). The Stokes cavity ringdown is performed with a laser source at 1178 nm. The mirror reflectivity quoted by the manufacturer (Research ElectroOptics, Inc.) is 0.99995 for both the pump and the Stokes wavelengths.
    [CrossRef] [PubMed]
  12. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
    [CrossRef]
  13. D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
    [CrossRef]

1999 (3)

1998 (2)

1996 (1)

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
[CrossRef]

1995 (2)

1992 (1)

1986 (2)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Bischel, W. K.

Brasseur, J. K.

Brownell, M.

T. Day, M. Brownell, and I. F. Wu, Proc. SPIE 2378, 35 (1995).
[CrossRef]

Carlsten, J. L.

Day, T.

T. Day, M. Brownell, and I. F. Wu, Proc. SPIE 2378, 35 (1995).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Dyer, M. J.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kimble, H. J.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Laschek, M.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
[CrossRef]

Meng, L.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Przyklenk, K.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
[CrossRef]

Rempe, G.

Repasky, K. S.

Roos, P. A.

Swanson, R. C.

Thompson, R. J.

Tunnermann, A.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
[CrossRef]

Wandt, D.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Watson, L. E.

Welling, H.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
[CrossRef]

Wu, I. F.

T. Day, M. Brownell, and I. F. Wu, Proc. SPIE 2378, 35 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, Opt. Commun. 130, 81 (1996).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. Day, M. Brownell, and I. F. Wu, Proc. SPIE 2378, 35 (1995).
[CrossRef]

Other (1)

Below the Stokes threshold, the reflected pump power Pr and the transmitted pump power Pt are both linear functions of the incident pump power: Pr=BrPi0 and Pt=BtPi0, where Br=R1-T-R2/1-R2C+R1-C and Bt=T2/1-R2C are two constants related to mirror reflectivity R, transmission T, and cavity coupling efficiency C. From the data below threshold in Fig. 2, we found that Br=0.318±0.0007 and Bt=0.476±0.001. Using R=0.99996±0.00001 measured from cavity ringdown, we can calculate that T=33±0.1×10-6 and C=70.4±0.2%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. A beam splitter with 5% transmission at the pump wavelength is used before the cavity to monitor the input pump power (detector D3) and the reflected pump power (D2). Two other detectors, D4 and D5, are put behind the cavity to measure the power of the transmitted pump and the Stokes beams. Dotted lines represent electronic wires.

Fig. 2
Fig. 2

Experimental data and theoretical fits of the ECDL-pumped cw Raman laser. Open circles, measured powers of the cavity transmitted pump, reflected pump, and Stokes beams as we change the input pump power. Curves, predictions from theory. The apparent threshold is 570±30 µW; the actual threshold is 400±30 µW because of the 70.4% coupling efficiency.

Fig. 3
Fig. 3

Photon conversion efficiency from pump to Stokes beams as a function of input pump power. The maximum efficiency is 12±1.3% and occurs at 1.6-mW input pump power.

Fig. 4
Fig. 4

Tunability of the ECDL-pumped cw Raman laser. The 18-nm wavelength range of the pump beam (top) results in a 40-nm tunable Stokes beam (bottom). The wavelength measurements were taken with a HP optical spectrum analyzer. Top, when the ECDL pump laser is tuned to its long-wavelength limit of 807 nm the background emission starts to rise, as shown by the broad emission near 792 nm.

Metrics