Abstract

Phase perturbations in the object plane of a partially coherent imaging system are found to produce artifacts in the aerial image. It is demonstrated that phase perturbations of as little as λ/30 rms can produce visible deformation in the final image for modest coherence factors, such as σc=0.4. A combination of simulation and experiment is used to demonstrate the effects. Application to line-edge roughness in lithography is described.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).
    [CrossRef]
  2. J. S. Taylor, G. E. Sommargren, D. W. Sweeney, and R. M. Hudyma, Proc. SPIE 3331, 580 (1998).
    [CrossRef]
  3. D. G. Stearns, D. P. Gaines, and D. W. Sweeney, J. Appl. Phys. 84, 1003 (1998).
    [CrossRef]
  4. J. E. Harvey, K. L. Lewotsky, and A. Kotha, Opt. Eng. 35, 2432 (1996).
  5. N. A. Beaudry and T. D. Milster, Proc. SPIE 3676, 653 (1998).
    [CrossRef]
  6. J. W. Goodman, Introduction of Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  7. M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).
  8. T. D. Milster, “A user friendly diffraction modeling program,” in 1992 Optical Data Storage Topical Meeting Conference Digest (Institute of Electrical and Electronics Engineers, New York, 1997). Optiscan ( http://www.optics.Arizona.edu/Milster/Optiscan/html/model_panel/optiscan_cheat_sheet.html ) is a locally written diffraction simulation tool designed to be used with MATLAB. MATLAB is a mathematical software package produced by The Math Works, Inc., Natick, Mass.
  9. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

1999 (1)

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

1998 (3)

J. S. Taylor, G. E. Sommargren, D. W. Sweeney, and R. M. Hudyma, Proc. SPIE 3331, 580 (1998).
[CrossRef]

D. G. Stearns, D. P. Gaines, and D. W. Sweeney, J. Appl. Phys. 84, 1003 (1998).
[CrossRef]

N. A. Beaudry and T. D. Milster, Proc. SPIE 3676, 653 (1998).
[CrossRef]

1996 (1)

J. E. Harvey, K. L. Lewotsky, and A. Kotha, Opt. Eng. 35, 2432 (1996).

1989 (1)

H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).
[CrossRef]

Beaudry, N. A.

N. A. Beaudry and T. D. Milster, Proc. SPIE 3676, 653 (1998).
[CrossRef]

Gaines, D. P.

D. G. Stearns, D. P. Gaines, and D. W. Sweeney, J. Appl. Phys. 84, 1003 (1998).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction of Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Harvey, J. E.

J. E. Harvey, K. L. Lewotsky, and A. Kotha, Opt. Eng. 35, 2432 (1996).

Hinsberg, W. D.

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

Hoffnagle, J. A.

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

Houle, F. A.

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

Hudyma, R. M.

J. S. Taylor, G. E. Sommargren, D. W. Sweeney, and R. M. Hudyma, Proc. SPIE 3331, 580 (1998).
[CrossRef]

Ishii, Y.

H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).
[CrossRef]

Ito, H.

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

Kinoshita, H.

H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).
[CrossRef]

Kotha, A.

J. E. Harvey, K. L. Lewotsky, and A. Kotha, Opt. Eng. 35, 2432 (1996).

Kurihara, K.

H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).
[CrossRef]

Lewotsky, K. L.

J. E. Harvey, K. L. Lewotsky, and A. Kotha, Opt. Eng. 35, 2432 (1996).

Milster, T. D.

N. A. Beaudry and T. D. Milster, Proc. SPIE 3676, 653 (1998).
[CrossRef]

T. D. Milster, “A user friendly diffraction modeling program,” in 1992 Optical Data Storage Topical Meeting Conference Digest (Institute of Electrical and Electronics Engineers, New York, 1997). Optiscan ( http://www.optics.Arizona.edu/Milster/Optiscan/html/model_panel/optiscan_cheat_sheet.html ) is a locally written diffraction simulation tool designed to be used with MATLAB. MATLAB is a mathematical software package produced by The Math Works, Inc., Natick, Mass.

Nguyen, G.

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

Sanchez, M. I.

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

Sommargren, G. E.

J. S. Taylor, G. E. Sommargren, D. W. Sweeney, and R. M. Hudyma, Proc. SPIE 3331, 580 (1998).
[CrossRef]

Stearns, D. G.

D. G. Stearns, D. P. Gaines, and D. W. Sweeney, J. Appl. Phys. 84, 1003 (1998).
[CrossRef]

Sweeney, D. W.

J. S. Taylor, G. E. Sommargren, D. W. Sweeney, and R. M. Hudyma, Proc. SPIE 3331, 580 (1998).
[CrossRef]

D. G. Stearns, D. P. Gaines, and D. W. Sweeney, J. Appl. Phys. 84, 1003 (1998).
[CrossRef]

Taylor, J. S.

J. S. Taylor, G. E. Sommargren, D. W. Sweeney, and R. M. Hudyma, Proc. SPIE 3331, 580 (1998).
[CrossRef]

Torii, Y.

H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).
[CrossRef]

J. Appl. Phys. (1)

D. G. Stearns, D. P. Gaines, and D. W. Sweeney, J. Appl. Phys. 84, 1003 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).
[CrossRef]

Microlithogr. World (1)

M. I. Sanchez, W. D. Hinsberg, F. A. Houle, J. A. Hoffnagle, H. Ito, and G. Nguyen, Microlithogr. World 8, 19 (1999).

Opt. Eng. (1)

J. E. Harvey, K. L. Lewotsky, and A. Kotha, Opt. Eng. 35, 2432 (1996).

Proc. SPIE (2)

N. A. Beaudry and T. D. Milster, Proc. SPIE 3676, 653 (1998).
[CrossRef]

J. S. Taylor, G. E. Sommargren, D. W. Sweeney, and R. M. Hudyma, Proc. SPIE 3331, 580 (1998).
[CrossRef]

Other (3)

T. D. Milster, “A user friendly diffraction modeling program,” in 1992 Optical Data Storage Topical Meeting Conference Digest (Institute of Electrical and Electronics Engineers, New York, 1997). Optiscan ( http://www.optics.Arizona.edu/Milster/Optiscan/html/model_panel/optiscan_cheat_sheet.html ) is a locally written diffraction simulation tool designed to be used with MATLAB. MATLAB is a mathematical software package produced by The Math Works, Inc., Natick, Mass.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

J. W. Goodman, Introduction of Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. For the results presented, the scatterplate is placed directly against the mask. The source is a Hg-vapor lamp that is filtered for λ=546.1 nm. Coherence is varied by adjustment of the aperture is the condenser system.

Fig. 2
Fig. 2

Contour maps of partially coherent images for three coherence factors and the scatterplate in the object plane. Each cross section is from the same position on the mask and scatterplate. Electronic noise is removed with a median window filter.

Fig. 3
Fig. 3

Two-dimensional cross-sectional variance of simulated images. An image is generated with a program called Optiscan.8 The coherence factor for this image is varied from σc=0.4 to σc=1.00.

Fig. 4
Fig. 4

Cross-sectional variance of experimental data for three coherence factors.

Tables (1)

Tables Icon

Table 1 Measured Image Variance σI As a Percentage of the Maximum Irradiance Value in the Coherent Image and Line-Edge Roughness σw As a Percentage of the Average Printed Feature Width for Three Coherence Factors

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

gx1=expiϕx1,
gx11+iϕx1-ϕx122,

Metrics