Abstract

We demonstrate near-transform-limited pulse generation through spectral compression arising from nonlinear propagation of negatively chirped pulses in optical fiber. The output pulse intensity and phase were quantified by use of second-harmonic generation frequency-resolved optical gating. Spectral compression from 8.4 to 2.4 nm was obtained. Furthermore, the phase of the spectrally compressed pulse was found to be constant over the spectral and temporal envelopes, which is indicative of a transform-limited pulse. Good agreement was found between the experimental results and numerical pulse-propagation studies.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, Opt. Lett. 18, 699 (1993).
    [CrossRef] [PubMed]
  2. S. T. Cundiff, B. C. Collings, L. Boivin, M. C. Nuss, K. Bergman, W. H. Knox, and S. G. Evangelides, J. Lightwave Technol. 17, 811 (1999).
    [CrossRef]
  3. S. Shen, C. Chang, H. P. Sardesai, V. Binjrajka, and A. M. Weiner, J. Lightwave Technol. 17, 452 (1999).
    [CrossRef]
  4. M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  6. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
    [CrossRef]
  7. R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  8. SpecTran Specialty Optics Co., fiber number CFO4247-04. The dispersion parameters are D=-113 ps/km/nm and dD/dλ=0.4 ps/km‐nm2.

1999 (2)

1994 (1)

1993 (2)

1984 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Bergman, K.

Binjrajka, V.

Boivin, L.

Brito Cruz, C. H.

Chang, C.

Collings, B. C.

Cundiff, S. T.

DeLong, K. W.

Evangelides, S. G.

Fork, R. L.

Fragnito, H. L.

Gordon, J. P.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

Hunter, J.

Knox, W. H.

Martinez, O. E.

Nuss, M. C.

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

Pires Mansur, N. L.

Planas, S. A.

Sardesai, H. P.

Shen, S.

Trebino, R.

Weiner, A. M.

White, W. E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental spectral compression setup, showing the prism separation of Lp=3 m. Pulse characterization was performed at locations , , and . (b) Measured FROG spectrogram after the prism pair and the SMF (location ). Spectral compression increases near-zero delay resulting from larger SPM at higher intensities. Average power in the fiber was 70 mW (8400-W peak power).

Fig. 2
Fig. 2

Observed spectra measured at location for increasing average power. Inset, spectral FWHM versus average power.

Fig. 3
Fig. 3

Retrieved intensity and phase: (a) temporal and (b) spectral for an average power of 40 mW measured at location (FROG error of G=0.0027). The phase over the temporal and spectral FWHM is free of significant distortion. The initial sech2 pulse temporal and spectral intensity (location ) is shown for comparison (thin curves).

Fig. 4
Fig. 4

Numerical solution where Epω was calculated with the measured phase distortions φ2 and φ3. The experimentally measured spectrum is shown to be very similar to it. Note that the measured spectrum is nearly identical to the FROG retrieved spectrum of Fig. 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δωt=-φNLt-tEt2.
Epω=FE0 secht/t0expiφ2ω2/2+φ3ω3/6,

Metrics