Abstract

The cavity-ringdown technique is applied to measure Rayleigh extinctions of Ar, N2, and SF6 in the 560–650-nm region at 294 K. It is shown that experimental and calculated Rayleigh scattering cross sections agree within an experimental uncertainty of 1% (for SF6, 3%).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Rayleigh, Philos. Mag. 47, 375 (1899).
  2. A. Bucholtz, Appl. Opt. 34, 2765 (1995).
    [CrossRef] [PubMed]
  3. D. R. Bates, Planet. Space Sci. 32, 785 (1984).
    [CrossRef]
  4. C. M. Penney, J. Opt. Soc. Am. 59, 34 (1969).
  5. L. V. King, Proc. R. Soc. London Ser. A 104, 333 (1923).
    [CrossRef]
  6. E. R. Peck and D. J. Fisher, J. Opt. Soc. Am. 54, 1362 (1964).
  7. C. M. Penney, R. L. St. Peters, and M. Lapp, J. Opt. Soc. Am. 64, 712 (1974).
  8. N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London Ser. A 295, 334 (1966).
    [CrossRef]
  9. A. T. Young, J. Appl. Meteorol. 20, 328 (1981).
    [CrossRef]
  10. R. Penndorf, J. Opt. Soc. Am. 47, 176 (1957).
  11. H. Naus and W. Ubachs, Appl. Opt. 38, 3423 (1999).
    [CrossRef]
  12. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998).
    [CrossRef]
  13. P. M. Teillet, Appl. Opt. 29, 1897 (1990).
    [CrossRef] [PubMed]
  14. D. Vukovic, G. A. Woolsey, and G. B. Scelsi, J. Phys. D 29, 634 (1996).
    [CrossRef]
  15. P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

1999

1998

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998).
[CrossRef]

1996

D. Vukovic, G. A. Woolsey, and G. B. Scelsi, J. Phys. D 29, 634 (1996).
[CrossRef]

1995

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

A. Bucholtz, Appl. Opt. 34, 2765 (1995).
[CrossRef] [PubMed]

1990

1984

D. R. Bates, Planet. Space Sci. 32, 785 (1984).
[CrossRef]

1981

A. T. Young, J. Appl. Meteorol. 20, 328 (1981).
[CrossRef]

1974

1969

1966

N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

1964

1957

1923

L. V. King, Proc. R. Soc. London Ser. A 104, 333 (1923).
[CrossRef]

1899

Rayleigh, Philos. Mag. 47, 375 (1899).

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998).
[CrossRef]

Bates, D. R.

D. R. Bates, Planet. Space Sci. 32, 785 (1984).
[CrossRef]

Bridge, N. J.

N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

Bucholtz, A.

Buckingham, A. D.

N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

Fisher, D. J.

King, L. V.

L. V. King, Proc. R. Soc. London Ser. A 104, 333 (1923).
[CrossRef]

Lapp, M.

Naus, H.

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998).
[CrossRef]

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998).
[CrossRef]

Peck, E. R.

Penndorf, R.

Penney, C. M.

Peters, R. L. St.

Rayleigh,

Rayleigh, Philos. Mag. 47, 375 (1899).

Scelsi, G. B.

D. Vukovic, G. A. Woolsey, and G. B. Scelsi, J. Phys. D 29, 634 (1996).
[CrossRef]

Teillet, P. M.

Ubachs, W.

Vukovic, D.

D. Vukovic, G. A. Woolsey, and G. B. Scelsi, J. Phys. D 29, 634 (1996).
[CrossRef]

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998).
[CrossRef]

Woolsey, G. A.

D. Vukovic, G. A. Woolsey, and G. B. Scelsi, J. Phys. D 29, 634 (1996).
[CrossRef]

Young, A. T.

A. T. Young, J. Appl. Meteorol. 20, 328 (1981).
[CrossRef]

Zalicki, P.

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

Zare, R. N.

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

Appl. Opt.

J. Appl. Meteorol.

A. T. Young, J. Appl. Meteorol. 20, 328 (1981).
[CrossRef]

J. Chem. Phys.

P. Zalicki and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).

J. Chem. Soc. Faraday Trans.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D

D. Vukovic, G. A. Woolsey, and G. B. Scelsi, J. Phys. D 29, 634 (1996).
[CrossRef]

Philos. Mag.

Rayleigh, Philos. Mag. 47, 375 (1899).

Planet. Space Sci.

D. R. Bates, Planet. Space Sci. 32, 785 (1984).
[CrossRef]

Proc. R. Soc. London Ser. A

L. V. King, Proc. R. Soc. London Ser. A 104, 333 (1923).
[CrossRef]

N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Extinction owing to Ar, N2, and SF6 as a function of pressure measured in the CRD setup. The bottom panel shows the residue of an unweighted linear regression of the Ar extinction curve (rms, 3×10-9 cm-1; mean, 4×10-13 cm-1).

Fig. 2
Fig. 2

Experimentally determined Rayleigh scattering cross sections for Ar and N2 compared with calculations.

Tables (1)

Tables Icon

Table 1 Deduced Rayleigh Scattering Parameters σ¯th and ϵ from Calculations and Experimentally Determined Values for σ¯expa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σν=24π3ν4N2nν2-12nν2+22Fkν,
βν=cdln R+cdσνlN,
Fkν=1.034+3.17×10-12ν2.
σν=σ¯ν4+.

Metrics