Abstract

We report extended mode-hop-free tuning in a continuous-wave, pump-enhanced optical parametric oscillator (PE-OPO). We employ a dual-cavity configuration to allow independent control of the resonant pump and signal fields, and so we can suppress frequent mode hops in the signal as the pump is tuned in frequency. With the signal field clamped in frequency by an uncoated etalon, the idler field can be scanned smoothly through a range of 10.8 GHz. The PE-OPO outputs can also be tuned coarsely from 1.01 to 1.18 µm in the signal and from 2.71 to 3.26 µm and 4.07 to 5.26 µm in the idler. We find that increased idler absorption only slightly increases the oscillation threshold.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Gibson, M. H. Dunn, and M. J. Padgett, Opt. Lett. 23, 40 (1998).
    [CrossRef]
  2. K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.
  3. G. M. Gibson, M. J. Padgett, M. Ebrahimzadeh, and M. H. Dunn, Opt. Lett. 24, 397 (1999).
    [CrossRef]
  4. M. E. Klein, D. Lee, J. Meyn, K. Boller, and R. Wallenstein, Opt. Lett. 24, 1142 (1999).
    [CrossRef]
  5. G. Robertson, M. J. Padgett, and M. H. Dunn, Opt. Lett. 19, 1735 (1994).
    [CrossRef] [PubMed]
  6. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).
    [CrossRef]
  7. M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
    [CrossRef]
  8. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]
  9. D. D. Lowenthal, IEEE J. Quantum Electron. 34, 1356 (1998).
    [CrossRef]

1999

1998

1997

1995

M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
[CrossRef]

1994

Beier, B.

M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
[CrossRef]

Boller, K.

Boller, K.-J.

M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
[CrossRef]

Dunn, M. H.

Ebrahimzadeh, M.

Gibson, G. M.

Jundt, D. H.

Klein, M. E.

Knappe, R.

M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
[CrossRef]

Kramper, P.

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).
[CrossRef]

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Lee, D.

Lowenthal, D. D.

D. D. Lowenthal, IEEE J. Quantum Electron. 34, 1356 (1998).
[CrossRef]

Meyn, J.

Mlynek, J.

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).
[CrossRef]

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Mor, O.

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Padgett, M. J.

Robertson, G.

Scheidt, M.

M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
[CrossRef]

Schiller, S.

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).
[CrossRef]

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Schneider, K.

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).
[CrossRef]

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Wallenstein, R.

M. E. Klein, D. Lee, J. Meyn, K. Boller, and R. Wallenstein, Opt. Lett. 24, 1142 (1999).
[CrossRef]

M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
[CrossRef]

IEEE J. Quantum Electron.

D. D. Lowenthal, IEEE J. Quantum Electron. 34, 1356 (1998).
[CrossRef]

J. Opt. Soc. Am. B

M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
[CrossRef]

Opt. Lett.

Other

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Predicted idler tuning and signal mode-hop rate [see relation (1)] for PPLN with a grating period of Λ=22.0 µm and a temperature of 150 °C.

Fig. 2
Fig. 2

Experimental setup: (a) single cavity, (b) double cavity.

Fig. 3
Fig. 3

Measured idler tuning: circles and dotted curves, λp-850 nm; squares and solid curves, λp=820 nm. The numbers in the figure are the grating periods in micrometers.

Fig. 4
Fig. 4

Thresholds for the common-cavity PE-SRO: filled squares, measured thresholds; open squares, thresholds when normalized for variations in signal cavity loss.

Fig. 5
Fig. 5

Change in enhancement-cavity length that is required for one to maintain resonance and idler output from the Michelson interferometer as a function of pump frequency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

νsνp-νsνpΔνpFSR,
npνp=nsνs+niνp-νs+c/Λ,
Δνi=1-νsνpΔνp,

Metrics