Abstract

We describe a novel method, based on asymmetric modulation in a Sagnac interferometer, that measures the chromatic dispersion of single-mode fibers. The interferometer incorporates a phase modulator and a test fiber, so the dispersion can be determined from the interference fringe seen when a sweep rf signal is applied to the modulator. This technique provides picosecond temporal resolution without the need for any fast diagnostic equipment and is capable of accurately measuring the average dispersion of fibers several kilometers long.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen and Chinlon Lin, Appl. Opt. 16, 3136 (1977).
    [CrossRef] [PubMed]
  2. D. N. Payne and A. H. Hartog, Electron. Lett. 13, 627 (1977).
    [CrossRef]
  3. K. Daikoku and A. Sugimura, Electron. Lett. 14, 149 (1978).
    [CrossRef]
  4. B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, Electron. Lett. 29, 132 (1993).
    [CrossRef]
  5. M. Tateda, N. Shibata, and S. Seikai, IEEE J. Quantum Electron. QE-17, 404 (1981).
    [CrossRef]
  6. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).
    [CrossRef] [PubMed]
  7. M. L. Dennis, I. N. Duling, and W. K. Burns, Electron. Lett. 32, 547 (1996).
    [CrossRef]

1996 (2)

M. L. Dennis, I. N. Duling, and W. K. Burns, Electron. Lett. 32, 547 (1996).
[CrossRef]

L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).
[CrossRef] [PubMed]

1993 (1)

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, Electron. Lett. 29, 132 (1993).
[CrossRef]

1981 (1)

M. Tateda, N. Shibata, and S. Seikai, IEEE J. Quantum Electron. QE-17, 404 (1981).
[CrossRef]

1978 (1)

K. Daikoku and A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

1977 (2)

D. N. Payne and A. H. Hartog, Electron. Lett. 13, 627 (1977).
[CrossRef]

L. G. Cohen and Chinlon Lin, Appl. Opt. 16, 3136 (1977).
[CrossRef] [PubMed]

Bodtker, E.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, Electron. Lett. 29, 132 (1993).
[CrossRef]

Burns, W. K.

M. L. Dennis, I. N. Duling, and W. K. Burns, Electron. Lett. 32, 547 (1996).
[CrossRef]

Christensen, B.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, Electron. Lett. 29, 132 (1993).
[CrossRef]

Cohen, L. G.

Daikoku, K.

K. Daikoku and A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

Dennis, M. L.

M. L. Dennis, I. N. Duling, and W. K. Burns, Electron. Lett. 32, 547 (1996).
[CrossRef]

Duling, I. N.

M. L. Dennis, I. N. Duling, and W. K. Burns, Electron. Lett. 32, 547 (1996).
[CrossRef]

Hartog, A. H.

D. N. Payne and A. H. Hartog, Electron. Lett. 13, 627 (1977).
[CrossRef]

Jacobsen, G.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, Electron. Lett. 29, 132 (1993).
[CrossRef]

Lin, Chinlon

Mamyshev, P. V.

Mark, J.

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, Electron. Lett. 29, 132 (1993).
[CrossRef]

Mollenauer, L. F.

Neubelt, M. J.

Payne, D. N.

D. N. Payne and A. H. Hartog, Electron. Lett. 13, 627 (1977).
[CrossRef]

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, IEEE J. Quantum Electron. QE-17, 404 (1981).
[CrossRef]

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, IEEE J. Quantum Electron. QE-17, 404 (1981).
[CrossRef]

Sugimura, A.

K. Daikoku and A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, IEEE J. Quantum Electron. QE-17, 404 (1981).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (4)

D. N. Payne and A. H. Hartog, Electron. Lett. 13, 627 (1977).
[CrossRef]

K. Daikoku and A. Sugimura, Electron. Lett. 14, 149 (1978).
[CrossRef]

B. Christensen, J. Mark, G. Jacobsen, and E. Bodtker, Electron. Lett. 29, 132 (1993).
[CrossRef]

M. L. Dennis, I. N. Duling, and W. K. Burns, Electron. Lett. 32, 547 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Tateda, N. Shibata, and S. Seikai, IEEE J. Quantum Electron. QE-17, 404 (1981).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the Sagnac interferometer with asymmetric modulation. L1 and L2 are the distances of the modulator from the coupler measured in the cw and the ccw directions, respectively. (b) Experimental setup.

Fig. 2
Fig. 2

Interferometric fringes observed while the modulation frequency is swept linearly. The scan time of 100 ms corresponds to 10 MHz. The optical wavelength is 1550 nm.

Fig. 3
Fig. 3

Interference fringes plotted at three different input wavelengths, showing the shift of corresponding peaks (indicated by arrows) with wavelength.

Fig. 4
Fig. 4

Fringe shift and parameter D (solid lines) versus optical wavelength. The shift is measured with reference to the fringe at 1550 nm. The dotted line corresponds to D measured by the modulation phase-shift method.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ecw=Ei2 expiω0t-β01L1-β02L2×1+iMcw cosωmt-β12ωmL2×exp-i12β22ωm2L2,
Eccw=Ei2i expiω0t-β01L1-β02L2×1+iMccw cosωmt-β11ωmL1×exp-i12β21ωm2L1,
E0=Ecw+iEccw/2=Ei2i expiω0t-β01L1-β02L2×Mcw cosωmt-β12ωmL2-Mccw×cosωmt-β11ωmL1.
E0E0*avg=Ei28Mcw-Mccw2+4McwMccw×sin2β12ωmL2-β11ωmL12.
f0=N/β12L2=Nfres.
D=β12λ=-1L2f0fresf0λ.

Metrics