Abstract

A technique for significantly suppressing severe fourth-order dispersion of ultrashort optical pulses in long-distance transmission is analyzed by use of the quadratic phase from the excess second-order dispersion of the fiber link in conjunction with synchronously applied cosine phase modulation of temporally stretched pulses. Numerical simulation predicts much improved transmission of 250-fs pulses at 5–10-GHz repetition rates over 100 km of fiber by π3.5π phase modulation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France, September 26–30, 1999.
  2. A. Höök and M. Karlsson, Opt. Lett. 18, 1388 (1993).
    [CrossRef]
  3. G. Boyer, Opt. Lett. 24, 945 (1999).
    [CrossRef]
  4. S. Shen and A. M. Weiner, IEEE Photon. Technol. Lett. 11, 827 (1999).
    [CrossRef]
  5. K. Takiguchi, S. Kawanishi, H. Takara, A. Himeno, and K. Hattori, J. Lightwave Technol. 16, 1647 (1998).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1989).
  7. M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
    [CrossRef]
  8. M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
    [CrossRef]

1999 (3)

G. Boyer, Opt. Lett. 24, 945 (1999).
[CrossRef]

S. Shen and A. M. Weiner, IEEE Photon. Technol. Lett. 11, 827 (1999).
[CrossRef]

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[CrossRef]

1998 (1)

1993 (1)

1988 (1)

M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1989).

Boyer, G.

Haner, M.

M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

Hattori, K.

Himeno, A.

Höök, A.

Karlsson, M.

Kawanishi, S.

Matsui, Y.

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[CrossRef]

Nakazawa, M.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France, September 26–30, 1999.

Pelusi, M. D.

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[CrossRef]

Shen, S.

S. Shen and A. M. Weiner, IEEE Photon. Technol. Lett. 11, 827 (1999).
[CrossRef]

Suzuki, A.

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[CrossRef]

Takara, H.

Takiguchi, K.

Tamura, K. R.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France, September 26–30, 1999.

Warren, W. S.

M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

Weiner, A. M.

S. Shen and A. M. Weiner, IEEE Photon. Technol. Lett. 11, 827 (1999).
[CrossRef]

Yamamoto, T.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France, September 26–30, 1999.

Yoshida, E.

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France, September 26–30, 1999.

Appl. Phys. Lett. (1)

M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. D. Pelusi, Y. Matsui, and A. Suzuki, IEEE Photon. Technol. Lett. 11, 1461 (1999).
[CrossRef]

S. Shen and A. M. Weiner, IEEE Photon. Technol. Lett. 11, 827 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1989).

T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa, presented at the European Conference on Optical Communication (ECOC’99), Nice, France, September 26–30, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Suppressing FOD of 250-fs pulses in 50-km fiber by combining the phase of (thin-solid curve) total FOD=β4L=5.5×10-2 ps4 with (dashed curve) SOD=β2rL=-0.9 ps2 of opposite sign and (dotted curve) 5-GHz PM of magnitude ϕp=3.5π to achieve (thick solid curve) bandwidth-limited constant phase. The phase functions are plotted for Ts=75.2 ps.

Fig. 2
Fig. 2

(a) Output FWHM and (b) peak power relative to total fiber length for a 250-fs input pulse (long-dashed curves) without FOD suppression and (solid curves) with FOD suppression with 5-GHz PM, ϕp=3.5π; (dotted curves) 10-GHz PM, ϕp=3.5π; (dashed–dotted curves) 10-GHz PM, ϕp=2.5π; and (short-dashed curves) 10-GHz PM, ϕp=1.5π. β4=1.1×10-3 ps4/km.

Fig. 3
Fig. 3

Output after 50-km fiber transmission of a 250-fs pulse (solid curve) without FOD suppression, β2r=0, FWHM=754 fs; and with FOD suppression with (dashed curve) 5-GHz PM, ϕp=3.5π, Ts=75.2 ps, β2rL=-0.9 ps2, FWHM=341 fs and (dotted curve) 10-GHz PM, ϕp=2.5π, Ts=40.9 ps, β2rL=-0.76 ps2, FWHM=348 fs. β4=1.1×10-3 ps4/km.

Fig. 4
Fig. 4

Output after 100-km fiber transmission of a 250-fs pulse (solid curve) without FOD suppression, β2r=0, FWHM=891 fs; and with FOD suppression with 5-GHz PM with (dashed curve) ϕp=3.5π, Ts=89.4 ps, β2rL=-1.27 ps2, FWHM=379 fs and (dotted curve) ϕp=1.2π, Ts=117 ps, β2rL=-0.74 ps2, FWHM=444 fs. β4=1.1×10-3 ps4/km.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

βf-f0=β0+β12πf-f0+β222πf-f02+β362πf-f03+β4242πf-f04+.
R=πFBWTs-β4L6β2rL1/2,
β2rL=-signβ44ϕpβ4L31/2.

Metrics