Abstract

We report that greater than 99.8% optical power transfer to whispering-gallery modes was achieved in fused-silica microspheres by use of a dual-tapered-fiber coupling method. The intrinsic cavity loss and the taper-to-sphere coupling coefficient are inferred from the experimental data. It is shown that the low intrinsic cavity loss and the symmetrical dual-coupling structure are crucial for obtaining the high coupling efficiency.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1998).
    [CrossRef]
  2. M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
    [CrossRef]
  3. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
    [CrossRef]
  4. M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
    [CrossRef]
  5. A. Serpenguzel, S. Arnold, and G. Griffel, Opt. Lett. 20, 654 (1995).
    [CrossRef]
  6. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  7. V. S. Ilchenko, A. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
    [CrossRef]
  8. G. Griffel, S. Arnold, D. Taskent, and A. Serpenguzel, Opt. Lett. 21, 695 (1995).
    [CrossRef]
  9. With this assumption, we approximate the coupler as nearly lossless so that reciprocity and energy-conservation relations can be used to relate the various coupling coefficients. The validity of this assumption is affirmed by the experimental results.
  10. Not all devices tested behaved in this manner. Scattering at the taper–sphere coupling is expected in general to be mode dependent and to provide the most significant source of non-coupling-related loss for WGM’s. Scattering is believed to be the dominant source of non-coupling-related loss in the current experiments.

1999

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

V. S. Ilchenko, A. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
[CrossRef]

1998

1997

1996

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

1995

1994

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

Arnold, S.

Birks, T. A.

Cai, M.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Cheung, G.

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1998).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

Griffel, G.

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

Hunziker, G.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Ilchenko, V. S.

Jacques, F.

Knight, J. C.

Lefevre-Segin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

Maleki, L.

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

Savchenkov, A. A.

Serpenguzel, A.

Taskent, D.

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

Vahala, K.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Yao, A. S.

IEEE Photon. Technol. Lett.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Opt. Commun.

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. A

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Segin, J.-M. Raimond, and S. Haroche, Phys. Rev. A 54, 1777 (1996).
[CrossRef]

Other

With this assumption, we approximate the coupler as nearly lossless so that reciprocity and energy-conservation relations can be used to relate the various coupling coefficients. The validity of this assumption is affirmed by the experimental results.

Not all devices tested behaved in this manner. Scattering at the taper–sphere coupling is expected in general to be mode dependent and to provide the most significant source of non-coupling-related loss for WGM’s. Scattering is believed to be the dominant source of non-coupling-related loss in the current experiments.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of a WGM resonator in the dual-taper coupling configuration. (b) Magnified photograph of the actual system. The background shadow in (b) is produced by the fiber stem that is used to hold the sphere.

Fig. 2
Fig. 2

Normalized transmission spectra for the (a) dual-taper coupling configuration and (b) single-taper coupling configuration. The resonance marked with an asterisk has a power transfer efficiency greater than 99.8%. Those marked with arrows have power tranfser efficiencies in excess of 99%. The sphere used in these measurements is 140 µm in diameter.

Fig. 3
Fig. 3

Calculated coupling coefficients κ12, κ22 and total cavity loss β12,β22, corresponding to the spectra shown in Fig. 2. κ12+β12 and β22 are in close agreement, showing that the second coupler is nearly identical to the first coupler.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T1,2=EtEi2=t1,2-α1,21-α1,2t1,22,
Q1,2=ωΔω=2π2nRλα1,2t1,21-α1,2t1,2,

Metrics