Abstract

All known polarizers operate through a separation of orthogonal electric field components, one of which is subsequently discarded. As a result, 50% of the unpolarized incident light is wasted in the process of conversion to polarized light. We demonstrate a new method by which we use the optical power in the ordinarily discarded component as the pump to amplify the retained component through photorefractive two-beam coupling to achieve greater than 50% throughput.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Chiou and P. Yeh, Opt. Lett. 10, 621-623 (1985); Opt. Lett. 11, 461 (1986); P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989); A. Takada and M. Cronin-Golomb, Opt. Lett. 20, 1459 (1995).
    [CrossRef] [PubMed]
  2. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
    [CrossRef]
  3. N. Kukhtarev, V. B. Markov, and S. G. Odulov, Opt. Commun.23, 338 (1977); R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 411–427.
    [CrossRef]
  4. H. Kong, C. Wu, and M. Cronin-Golumb, Opt. Lett. 16, 1183 (1991).
    [CrossRef] [PubMed]
  5. G. C. Valley and M. B. Klein, Opt. Eng. 22, 704 (1983).
    [CrossRef]
  6. S. Breugnot, D. Dolfi, H. Rajbenbach, J.-P. Huignard, and M. Defour, Opt. Lett. 19, 1070 (1994).
    [CrossRef] [PubMed]
  7. M. D. Skeldon, P. Narum, and R. W. Boyd, Opt. Lett. 12, 343 (1987).
    [CrossRef] [PubMed]
  8. M. T. Gruneisen, K. R. MacDonald, and R. W. Boyd, J. Opt. Soc. Am. B 5, 123 (1988).
    [CrossRef]
  9. R. Barakat, Opt. Commun. 123, 443 (1996).
    [CrossRef]
  10. C. H. Bennett, Int. J. Theor. Phys. 21, 305 (1982); H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Information, and Computing (Princeton U. Press, Princeton, N.J., 1990).
    [CrossRef]

1996 (1)

R. Barakat, Opt. Commun. 123, 443 (1996).
[CrossRef]

1994 (1)

1991 (1)

1988 (1)

1987 (1)

1985 (1)

A. E. Chiou and P. Yeh, Opt. Lett. 10, 621-623 (1985); Opt. Lett. 11, 461 (1986); P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989); A. Takada and M. Cronin-Golomb, Opt. Lett. 20, 1459 (1995).
[CrossRef] [PubMed]

1983 (1)

G. C. Valley and M. B. Klein, Opt. Eng. 22, 704 (1983).
[CrossRef]

1982 (1)

C. H. Bennett, Int. J. Theor. Phys. 21, 305 (1982); H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Information, and Computing (Princeton U. Press, Princeton, N.J., 1990).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Barakat, R.

R. Barakat, Opt. Commun. 123, 443 (1996).
[CrossRef]

Bennett, C. H.

C. H. Bennett, Int. J. Theor. Phys. 21, 305 (1982); H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Information, and Computing (Princeton U. Press, Princeton, N.J., 1990).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Boyd, R. W.

Breugnot, S.

Chiou, A. E.

A. E. Chiou and P. Yeh, Opt. Lett. 10, 621-623 (1985); Opt. Lett. 11, 461 (1986); P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989); A. Takada and M. Cronin-Golomb, Opt. Lett. 20, 1459 (1995).
[CrossRef] [PubMed]

Cronin-Golumb, M.

Defour, M.

Dolfi, D.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Gruneisen, M. T.

Huignard, J.-P.

Klein, M. B.

G. C. Valley and M. B. Klein, Opt. Eng. 22, 704 (1983).
[CrossRef]

Kong, H.

Kukhtarev, N.

N. Kukhtarev, V. B. Markov, and S. G. Odulov, Opt. Commun.23, 338 (1977); R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 411–427.
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

MacDonald, K. R.

Markov, V. B.

N. Kukhtarev, V. B. Markov, and S. G. Odulov, Opt. Commun.23, 338 (1977); R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 411–427.
[CrossRef]

Narum, P.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Odulov, S. G.

N. Kukhtarev, V. B. Markov, and S. G. Odulov, Opt. Commun.23, 338 (1977); R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 411–427.
[CrossRef]

Rajbenbach, H.

Skeldon, M. D.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Valley, G. C.

G. C. Valley and M. B. Klein, Opt. Eng. 22, 704 (1983).
[CrossRef]

Wu, C.

Yeh, P.

A. E. Chiou and P. Yeh, Opt. Lett. 10, 621-623 (1985); Opt. Lett. 11, 461 (1986); P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989); A. Takada and M. Cronin-Golomb, Opt. Lett. 20, 1459 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. 9, 72 (1966); J. Feinberg, D. Heinman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Int. J. Theor. Phys. (1)

C. H. Bennett, Int. J. Theor. Phys. 21, 305 (1982); H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Information, and Computing (Princeton U. Press, Princeton, N.J., 1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

R. Barakat, Opt. Commun. 123, 443 (1996).
[CrossRef]

Opt. Eng. (1)

G. C. Valley and M. B. Klein, Opt. Eng. 22, 704 (1983).
[CrossRef]

Opt. Lett. (4)

Other (1)

N. Kukhtarev, V. B. Markov, and S. G. Odulov, Opt. Commun.23, 338 (1977); R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 411–427.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup used to demonstrate the possibility of converting depolarized light to linearly polarized light with greater than 50% efficiency. (b) Experimental setup used to measure quantitatively the extent to which optical power can be transferred between orthogonal polarization states. λ/2’s, half-wave plates.

Fig. 2
Fig. 2

Power of the 514-nm signal beam measured as a function of the angle of the polarization analyzer of Fig. 1(a). Note that the signal beam has been amplified approximately twofold by the pump beam while maintaining its initial linear polarization.

Fig. 3
Fig. 3

Temporal evolution of the signal and the pump beams, illustrating power transfer to the signal beam by use of the setup shown in Fig. 1(b). In the absence of the fan-suppression beam (a), the signal beam is initially amplified at the expense of the pump beam. On further evolution, however, both beams are attenuated owing to the growth of beam fanning. By application of the fan-suppression beam (b), beam-fanning losses are minimized, and the amplified signal beam saturates at maximum gain.

Fig. 4
Fig. 4

Measured transmitted power of the signal and the pump beams as a fraction of the input polarization direction. For comparison, the predicted transmittance of an ordinary linear polarizer is also shown (dashed curves). The transmitted signal power is nearly constant for a wide range of input polarizations and exceeds the value predicted by the law of Malus for θp>30°. The data were collected at 632.8 nm with the setup shown in Fig. 1(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Er,t=Apzexpikp·r+Aszexpiks·rexp-iωt+c.c.
n=n0+12in03reffEmAs*ApAp2+As2+c.c.

Metrics