Abstract

High-speed optical communication requires ultrafast all-optical processing and switching capabilities. The Kerr nonlinearity, an ultrafast optical nonlinearity, is often used as the basic switching mechanism. A practical, small device that can be switched with 1pJ energies requires a large Kerr effect with minimal losses (both linear and nonlinear). We have investigated theoretically and experimentally a number of Se-based chalcogenide glasses. We have found a number of compounds with a Kerr nonlinearity hundreds of times larger than silica, making them excellent candidates for ultrafast all-optical devices.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Etemad, G. L. Baker, and Z. G. Soos, in Molecular Nonlinear Optics, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 433–465.
    [CrossRef]
  2. See, e.g, N. S. Patel, K. L. Hall, and K. A. Rauschenbach, Appl. Opt. 37, 2831 (1998).
    [CrossRef]
  3. M. E. Lines, J. Appl. Phys. 69, 6876 (1991).
    [CrossRef]
  4. M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
    [CrossRef]
  5. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  6. N. F. Nott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford U. Press, Oxford, 1979).
  7. J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), pp. 171–206.
  8. S. H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).
    [CrossRef]
  9. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
    [CrossRef]
  10. Z. S. Borisova, Glassy Semiconductors (Plenum, London, 1981).
    [CrossRef]
  11. S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 103, 179 (1988).
    [CrossRef]
  12. W. Burckhardt and A. Feltz, Phys. Status Solidi B 118, 653 (1983).
    [CrossRef]
  13. K. Shimakawa, J. Non-Cryst. Solids 43, 229 (1981).
    [CrossRef]
  14. W. Burckhardt and A. Feltz, Phys. Status Solidi A 80, 463 (1983).
    [CrossRef]
  15. R. A. Street, R. J. Nemanich, and G. A. N. Connell, Phys. Rev. B 18, 6915 (1978).
    [CrossRef]
  16. E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
    [CrossRef]
  17. M. F. Kotkata, K. M. Kandil, and M. L. Theye, J. Non-Cryst. Solids 164, 1259 (1993).
    [CrossRef]
  18. P. Klocek and L. Colombo, J. Non-Cryst. Solids 93, 1 (1987).
    [CrossRef]
  19. D. Milam and M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
    [CrossRef]

1998 (1)

1997 (1)

M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

1993 (1)

M. F. Kotkata, K. M. Kandil, and M. L. Theye, J. Non-Cryst. Solids 164, 1259 (1993).
[CrossRef]

1991 (3)

E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
[CrossRef]

M. E. Lines, J. Appl. Phys. 69, 6876 (1991).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1988 (1)

S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 103, 179 (1988).
[CrossRef]

1987 (1)

P. Klocek and L. Colombo, J. Non-Cryst. Solids 93, 1 (1987).
[CrossRef]

1983 (2)

W. Burckhardt and A. Feltz, Phys. Status Solidi A 80, 463 (1983).
[CrossRef]

W. Burckhardt and A. Feltz, Phys. Status Solidi B 118, 653 (1983).
[CrossRef]

1981 (1)

K. Shimakawa, J. Non-Cryst. Solids 43, 229 (1981).
[CrossRef]

1978 (1)

R. A. Street, R. J. Nemanich, and G. A. N. Connell, Phys. Rev. B 18, 6915 (1978).
[CrossRef]

1976 (1)

D. Milam and M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

1971 (1)

S. H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).
[CrossRef]

Asobe, M.

M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

Baker, G. L.

S. Etemad, G. L. Baker, and Z. G. Soos, in Molecular Nonlinear Optics, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 433–465.
[CrossRef]

Borisova, Z. S.

Z. S. Borisova, Glassy Semiconductors (Plenum, London, 1981).
[CrossRef]

Broese, E.

E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
[CrossRef]

Burckhardt, W.

W. Burckhardt and A. Feltz, Phys. Status Solidi B 118, 653 (1983).
[CrossRef]

W. Burckhardt and A. Feltz, Phys. Status Solidi A 80, 463 (1983).
[CrossRef]

Colombo, L.

P. Klocek and L. Colombo, J. Non-Cryst. Solids 93, 1 (1987).
[CrossRef]

Connell, G. A. N.

R. A. Street, R. J. Nemanich, and G. A. N. Connell, Phys. Rev. B 18, 6915 (1978).
[CrossRef]

Davis, E. A.

N. F. Nott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford U. Press, Oxford, 1979).

DiDomenico, M.

S. H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).
[CrossRef]

Etemad, S.

S. Etemad, G. L. Baker, and Z. G. Soos, in Molecular Nonlinear Optics, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 433–465.
[CrossRef]

Feltz, A.

W. Burckhardt and A. Feltz, Phys. Status Solidi A 80, 463 (1983).
[CrossRef]

W. Burckhardt and A. Feltz, Phys. Status Solidi B 118, 653 (1983).
[CrossRef]

Giridhar, A.

S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 103, 179 (1988).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Hall, K. L.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

Kandil, K. M.

M. F. Kotkata, K. M. Kandil, and M. L. Theye, J. Non-Cryst. Solids 164, 1259 (1993).
[CrossRef]

Klocek, P.

P. Klocek and L. Colombo, J. Non-Cryst. Solids 93, 1 (1987).
[CrossRef]

Kotkata, M. F.

M. F. Kotkata, K. M. Kandil, and M. L. Theye, J. Non-Cryst. Solids 164, 1259 (1993).
[CrossRef]

Lehmann, A.

E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
[CrossRef]

Lines, M. E.

M. E. Lines, J. Appl. Phys. 69, 6876 (1991).
[CrossRef]

Mahadevan, S.

S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 103, 179 (1988).
[CrossRef]

Milam, D.

D. Milam and M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

Nemanich, R. J.

R. A. Street, R. J. Nemanich, and G. A. N. Connell, Phys. Rev. B 18, 6915 (1978).
[CrossRef]

Nott, N. F.

N. F. Nott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford U. Press, Oxford, 1979).

Patel, N. S.

Rauschenbach, K. A.

Ritcher, W.

E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Schirmer, G.

E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
[CrossRef]

Schroter, B.

E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Shimakawa, K.

K. Shimakawa, J. Non-Cryst. Solids 43, 229 (1981).
[CrossRef]

Singh, A. K.

S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 103, 179 (1988).
[CrossRef]

Soos, Z. G.

S. Etemad, G. L. Baker, and Z. G. Soos, in Molecular Nonlinear Optics, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 433–465.
[CrossRef]

Street, R. A.

R. A. Street, R. J. Nemanich, and G. A. N. Connell, Phys. Rev. B 18, 6915 (1978).
[CrossRef]

Tauc, J.

J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), pp. 171–206.

Theye, M. L.

M. F. Kotkata, K. M. Kandil, and M. L. Theye, J. Non-Cryst. Solids 164, 1259 (1993).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Weber, M. J.

D. Milam and M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Wemple, S. H.

S. H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

J. Appl. Phys. (2)

M. E. Lines, J. Appl. Phys. 69, 6876 (1991).
[CrossRef]

D. Milam and M. J. Weber, J. Appl. Phys. 47, 2497 (1976).
[CrossRef]

J. Non-Cryst. Solids (5)

E. Broese, B. Schroter, A. Lehmann, W. Ritcher, and G. Schirmer, J. Non-Cryst. Solids 130, 52 (1991).
[CrossRef]

M. F. Kotkata, K. M. Kandil, and M. L. Theye, J. Non-Cryst. Solids 164, 1259 (1993).
[CrossRef]

P. Klocek and L. Colombo, J. Non-Cryst. Solids 93, 1 (1987).
[CrossRef]

S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 103, 179 (1988).
[CrossRef]

K. Shimakawa, J. Non-Cryst. Solids 43, 229 (1981).
[CrossRef]

Opt. Fiber Technol. (1)

M. Asobe, Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

Phys. Rev. B (2)

S. H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).
[CrossRef]

R. A. Street, R. J. Nemanich, and G. A. N. Connell, Phys. Rev. B 18, 6915 (1978).
[CrossRef]

Phys. Status Solidi A (1)

W. Burckhardt and A. Feltz, Phys. Status Solidi A 80, 463 (1983).
[CrossRef]

Phys. Status Solidi B (1)

W. Burckhardt and A. Feltz, Phys. Status Solidi B 118, 653 (1983).
[CrossRef]

Other (4)

S. Etemad, G. L. Baker, and Z. G. Soos, in Molecular Nonlinear Optics, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 433–465.
[CrossRef]

Z. S. Borisova, Glassy Semiconductors (Plenum, London, 1981).
[CrossRef]

N. F. Nott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford U. Press, Oxford, 1979).

J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), pp. 171–206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

FOM versus nonlinear transmission for a total nonlinear phase shift of π rad.

Fig. 2
Fig. 2

Theoretical dispersion curve Fx of the Kerr effect (normalized to the low-frequency value) and TPA (normalized to its peak value), assuming an infinitely sharp absorption edge.

Fig. 3
Fig. 3

Experimental z-scan data and fit for Ge0.28Se0.60Sb0.12 for both (a) TPA (open aperture) and (b) n2 (closed aperture) at λ=1.5 µm.

Tables (2)

Tables Icon

Table 1 Material Parameters for the Different Glasses

Tables Icon

Table 2 Results of the Measurements at λ=1.5 µm for Different Glasses

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕNLL=2πn2/βλln1+βI0Leff,
ϕNLL=2π FOM lnexp-αL/TL,
n2ω=1.7×10-14n02+23n02-1×d/n0Es2Fω/Eg cm2/W,

Metrics