Abstract

We present a method for manufacturing phase plates to compensate for the wave aberration in the human eye. The wave aberration of the eye is measured in vivo by a new laser ray-tracing method and then compensated for by a phase plate placed in front of the eye. This plate is made from a gray-level single-mask photosculpture in photoresist. Two experiments were carried out, first with an artificial eye and then with a human eye: 80% compensation for the wave aberration was achieved in both cases.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Smirnov, Biofizika 6, 687 (1961); Byophysics 6, 766 (1962).
  2. J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
    [CrossRef]
  3. N. Chateau, A. Blanchard, and D. Baude, J. Opt. Soc. Am. A 15, 2589 (1998).
    [CrossRef]
  4. N. López, H. C. Howland, B. Howland, N. Charman, and R. Applegate, J. Opt. Soc. Am. A 15, 2563 (1998).
    [CrossRef]
  5. R. Navarro and M. A. Losada, Optom. Vision Sci. 74, 540 (1997).
    [CrossRef]
  6. R. Navarro and E. Moreno-Barriuso, Opt. Lett. 24, 951 (1999).
    [CrossRef]
  7. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1992).
  8. H. Andersson, M. Ekberg, S. Hard, S. Jakobson, M. Larsson, and T. Nilsson, Appl. Opt. 29, 4259 (1990).
    [CrossRef] [PubMed]
  9. D. R. Purdy, Pure Appl. Opt. 3, 167 (1995).
    [CrossRef]
  10. T. J. Suleski and D. C. O’Shea, Appl. Opt. 34, 7507 (1995).
    [CrossRef] [PubMed]
  11. J. Liang and D. R. Williams, J. Opt. Soc. Am. A 14, 2873 (1997).
    [CrossRef]

1999 (1)

1998 (2)

1997 (3)

1995 (2)

1990 (1)

1961 (1)

M. S. Smirnov, Biofizika 6, 687 (1961); Byophysics 6, 766 (1962).

Andersson, H.

Applegate, R.

Baude, D.

Blanchard, A.

Charman, N.

Chateau, N.

Ekberg, M.

Hard, S.

Howland, B.

Howland, H. C.

Jakobson, S.

Larsson, M.

Liang, J.

López, N.

Losada, M. A.

R. Navarro and M. A. Losada, Optom. Vision Sci. 74, 540 (1997).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1992).

Miller, D. T.

Moreno-Barriuso, E.

Navarro, R.

R. Navarro and E. Moreno-Barriuso, Opt. Lett. 24, 951 (1999).
[CrossRef]

R. Navarro and M. A. Losada, Optom. Vision Sci. 74, 540 (1997).
[CrossRef]

Nilsson, T.

O’Shea, D. C.

Purdy, D. R.

D. R. Purdy, Pure Appl. Opt. 3, 167 (1995).
[CrossRef]

Smirnov, M. S.

M. S. Smirnov, Biofizika 6, 687 (1961); Byophysics 6, 766 (1962).

Suleski, T. J.

Williams, D. R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

LRT method: A narrow laser pencil is deflected by a computer-controlled two-dimensional laser scanner. The beam, after passing through a beam splitter and a given point at the pupil plane, forms a small spot of light at the retina. The position offset, AO, between this spot and that formed by the chief ray is the aberration of that ray. A CCD camera records the image of each spot to compute its centroid. PBS, polarization beam splitter.

Fig. 2
Fig. 2

Manufacture of phase plates. The photoresist deposited upon a glass substrate is exposed to UV radiation through a gray-level transmission mask. After developing, we obtained the desired profile.

Fig. 3
Fig. 3

Top, wave aberration (W. A.) of subject EM (right eye) before (left) and after (right) compensation. The contour-line step is 0.5 µm. Bottom, ideal (left) and real (right) phases of the plate, measured by a Mach–Zehnder interferometer; the rms difference between the design (ideal) and the manufactured plate is 0.25 µm.

Metrics