Abstract

We demonstrate a long-period grating whose resonance varies in strength but remains fixed in wavelength with either temperature or strain. Using this fiber-grating sensor, we resolved a change of 1 µ of strain or 0.04 °C in temperature. Such sensors require no spectrometer or other frequency-selective components and can operate in real time.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef] [PubMed]
  3. X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
    [CrossRef]
  4. X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
    [CrossRef]
  5. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
    [CrossRef]

1999 (2)

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

1996 (2)

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Huang, D.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

Huang, Z.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

Jiang, S.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Lemaire, P. L.

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Poo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Shi, W.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

Shu, X.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

Wang, Q.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

Zhu, X.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

Electron. Lett. (2)

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Poo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

A. M. Vengsarkar, P. L. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Long-period grating resonances for core–cladding mode coupling are found graphically by the intersection of the intermodal dispersion function Φλ and the horizontal line representing the spatial period of the grating. For cladding mode 1 the resonance shifts from λ1 to λ1 as the grating period shifts from Λ to Λ. However, for cladding mode 2 the resonant wavelength remains fixed at λ2 as the grating period is changed, although the strength of the resonance varies. This coupling between the core mode and cladding mode 2 has a quadratic-dispersion resonance.

Fig. 2
Fig. 2

Change of the transmission spectrum of a quadratic-dispersion long-period grating under strain (from 1650 to 9410 µ). The strength of the grating diminishes under increasing strain, but the resonant wavelength remains pinned at 1420 nm.

Fig. 3
Fig. 3

Change of transmission through a quadratic-dispersion long-period grating under increasing strain. The strain is increasing linearly with time in discrete steps. The three traces have different strain steps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φλ2πnco-ncl/λres=2π/Λ,
Φλ-Φλres=a1λ-λres+a2λ-λres2+.
δλ-2πa1Λ2δΛ.
δλ±-2πa2Λ2δΛ1/2.

Metrics