Abstract

We experimentally and theoretically analyze the radiation emitted from subwavelength-sized apertures in near-field optical probes. By decomposing the experimentally obtained radiation patterns into vector spherical waves, we describe the fields in terms of a series of multipole sources. We fit polarization-resolved angular intensity distributions, measured as far as 150° from the normal, with dipole, quadrupole, and octupole radiation. We find that the magnetic and the electric dipole components are dominant but that the interference terms between dipoles and higher-order poles are not negligible. This result can be used as the basis for understanding near-field optical interactions and images.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Paesler and P. J. Moyer, Near-Field Optics (Wiley, New York, 1996).
  2. E. Wolf and J. T. Foley, Opt. Lett. 23, 16 (1998).
    [CrossRef]
  3. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1974), Chap. 16.
  4. C. Durkan and I. V. Shvets, J. Appl. Phys. 83, 1837 (1998).
    [CrossRef]
  5. H. Bethe, Phys. Rev. 66, 163 (1944).
    [CrossRef]
  6. C. Bouwkamp, Philips Res. Rep. 5, 321 (1950).
  7. C. Obermuller and K. Karrai, Appl. Phys. Lett. 67, 3408 (1995).
    [CrossRef]
  8. D. J. Shin, A. Chavez-Pirson, and Y. H. Lee, J. Microsc. (Oxford) 194, 353 (1999).
    [CrossRef]

1999

D. J. Shin, A. Chavez-Pirson, and Y. H. Lee, J. Microsc. (Oxford) 194, 353 (1999).
[CrossRef]

1998

E. Wolf and J. T. Foley, Opt. Lett. 23, 16 (1998).
[CrossRef]

C. Durkan and I. V. Shvets, J. Appl. Phys. 83, 1837 (1998).
[CrossRef]

1995

C. Obermuller and K. Karrai, Appl. Phys. Lett. 67, 3408 (1995).
[CrossRef]

1950

C. Bouwkamp, Philips Res. Rep. 5, 321 (1950).

1944

H. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Bethe, H.

H. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Bouwkamp, C.

C. Bouwkamp, Philips Res. Rep. 5, 321 (1950).

Chavez-Pirson, A.

D. J. Shin, A. Chavez-Pirson, and Y. H. Lee, J. Microsc. (Oxford) 194, 353 (1999).
[CrossRef]

Durkan, C.

C. Durkan and I. V. Shvets, J. Appl. Phys. 83, 1837 (1998).
[CrossRef]

Foley, J. T.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1974), Chap. 16.

Karrai, K.

C. Obermuller and K. Karrai, Appl. Phys. Lett. 67, 3408 (1995).
[CrossRef]

Lee, Y. H.

D. J. Shin, A. Chavez-Pirson, and Y. H. Lee, J. Microsc. (Oxford) 194, 353 (1999).
[CrossRef]

Moyer, P. J.

M. A. Paesler and P. J. Moyer, Near-Field Optics (Wiley, New York, 1996).

Obermuller, C.

C. Obermuller and K. Karrai, Appl. Phys. Lett. 67, 3408 (1995).
[CrossRef]

Paesler, M. A.

M. A. Paesler and P. J. Moyer, Near-Field Optics (Wiley, New York, 1996).

Shin, D. J.

D. J. Shin, A. Chavez-Pirson, and Y. H. Lee, J. Microsc. (Oxford) 194, 353 (1999).
[CrossRef]

Shvets, I. V.

C. Durkan and I. V. Shvets, J. Appl. Phys. 83, 1837 (1998).
[CrossRef]

Wolf, E.

Appl. Phys. Lett.

C. Obermuller and K. Karrai, Appl. Phys. Lett. 67, 3408 (1995).
[CrossRef]

J. Appl. Phys.

C. Durkan and I. V. Shvets, J. Appl. Phys. 83, 1837 (1998).
[CrossRef]

J. Microsc. (Oxford)

D. J. Shin, A. Chavez-Pirson, and Y. H. Lee, J. Microsc. (Oxford) 194, 353 (1999).
[CrossRef]

Opt. Lett.

Philips Res. Rep.

C. Bouwkamp, Philips Res. Rep. 5, 321 (1950).

Phys. Rev.

H. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Other

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1974), Chap. 16.

M. A. Paesler and P. J. Moyer, Near-Field Optics (Wiley, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of the experimental setup: PMT, photomultiplier; PD, photodiode; LD, laser diode.

Fig. 2
Fig. 2

Radiation field from the near-field optical probe for input light that is circularly polarized: (a) two-dimensional intensity distribution. The data over the curved surface of sphere θ,ϕ are represented on a flat surface x,y by a mapping, θ=πx2+y20.5 and ϕ=Argx+yi. The scan range is 0°θ120°. The circle with the arrow indicates the polarization. (b) Extinction ratio and local polarization direction along the line shown in (a).

Fig. 3
Fig. 3

(a), (b) Radiation fields from the near-field optical probe for input light that is linearly polarized. The double arrows indicate the polarization direction. The scan range is 0°θ150°. The line scan is (c) along and (d) normal to the polarization direction as shown in (b). The solid curves are the fitted curves with parameters taken from Table 1. Each square denotes a data point.

Tables (1)

Tables Icon

Table 1 Normalized Coefficients of Magnetic and Electric Multipoles l,m for Left-Handed Circularly Polarized Input

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

NSOM probe=l,maMl,mMMPl,m+aEl,mEMPl,m,
ElmM=hl1krXlmθ,ϕ,   BlmM=-ik×ElmM, BlmE=hl1krXlmθ,ϕ,   ElmE=ik×BlmE,
θlmθ,ϕθˆ·Xlmθ,ϕ=-msin θYlmθ,ϕll+1,ϕlmθ,ϕϕˆ·Xlmθ,ϕ=-iθYlmθ,ϕll+1.
Iθθ,ϕ=l,m-il+1aMl,mθlmθ,ϕ+aEl,mϕlmθ,ϕ2, Iϕθ,ϕ=l,m-il+1aMl,mθlmθ,ϕ-aEl,mϕlmθ,ϕ2.

Metrics