Abstract

Persistent holograms are recorded locally with red light in a LiNbO3 crystal doped with Mg and Fe. Selective erasure is realized by use of a focused UV sensitizing light. We demonstrate the recording of 50 localized images as well as selective erasure in a 4 mm×4 mm×4 mm crystal. A comparison of the total recording time for M holograms obtained with the conventional distributed-volume recording and the localized methods is presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Sincerbox, Selected Papers on Holographic Storage, Vol. 15 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1995).
  2. K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
    [CrossRef]
  3. A. Adibi, K. Buse, and D. Psaltis, Opt. Lett. 24, 652 (1999).
    [CrossRef]
  4. H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 22, 1305 (1997).
    [CrossRef]
  5. K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
    [CrossRef]
  6. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
    [CrossRef] [PubMed]
  7. D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
    [CrossRef] [PubMed]
  8. M. M. Wang, S. C. Esener, F. B. McCormick, I. Cokgor, A. S. Dvornikov, and P. M. Rentzepis, Opt. Lett. 22, 558 (1997).
    [CrossRef] [PubMed]
  9. F. H. Mok, G. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef] [PubMed]
  10. P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series on Pure and Applied Optics (Wiley, New York, 1993), Chap. 3, p. 108.

1999

1998

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

1997

1996

1995

G. T. Sincerbox, Selected Papers on Holographic Storage, Vol. 15 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1995).

1991

K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

1989

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Adibi, A.

A. Adibi, K. Buse, and D. Psaltis, Opt. Lett. 24, 652 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

Akella, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Burr, G.

Buse, K.

A. Adibi, K. Buse, and D. Psaltis, Opt. Lett. 24, 652 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Cokgor, I.

Dvornikov, A. S.

Esener, S. C.

Guenther, H.

Hesselink, L.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Holtmann, L.

K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Kratzig, E.

K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Lande, D.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Liu, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Macfarlane, R. M.

McCormick, F. B.

Mok, F. H.

Neurgaonkar, R. R.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 22, 1305 (1997).
[CrossRef]

Orlov, S.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Psaltis, D.

Rentzepis, P. M.

Sincerbox, G. T.

G. T. Sincerbox, Selected Papers on Holographic Storage, Vol. 15 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1995).

Wang, M. M.

Wittmann, G.

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series on Pure and Applied Optics (Wiley, New York, 1993), Chap. 3, p. 108.

Nature

K. Buse, A. Adibi, and D. Psaltis, Nature 393, 665 (1998).
[CrossRef]

Opt. Commun.

K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Opt. Lett.

Science

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

SPIE Milestone Series

G. T. Sincerbox, Selected Papers on Holographic Storage, Vol. 15 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1995).

Wiley Series on Pure and Applied Optics

P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series on Pure and Applied Optics (Wiley, New York, 1993), Chap. 3, p. 108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Recording setup for the 50-hologram experiment. The camera CCD and detector are interchangeable. λ/2-plate, half-wave plate; PB’s, polarizing beam splitters; SHG, second-harmonic generator; MIRA, femtosecond laser.

Fig. 2
Fig. 2

(a) 50 images recorded in a LiNbO3:Fe,Mn crystal. Each peak corresponds to the diffraction efficiency of a hologram stored at a different spatial location. (b) Hologram 25 is selectively erased by continuous illumination with UV and red reference light.

Fig. 3
Fig. 3

Ratio of total recording time between the localized and the distributed-volume methods as a function of the number of holograms needed to record for two different values of the ratio τe/τw and t1=τe/20.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η=CA01-exp-tMτwCA0τwtM=CM#τe/t1+M-1,
Ttot=τe ln1+M-1t1/τe.
Ttot=Mts,
S=CMA0τw=CMA0τw1MIrIsIrIs=CA0τw=S.
η=CA0/τwtsη=CA0/τwtM.
τw=τwIr+IsMIr+Is=τw2M+1τeM,
η=CA0/τwτw1-exp-ts/τw=CA0/τwtM.
Ttot=Mts=-2MM+1τw ln1-τeτwM+12τet1+M-1.

Metrics