Abstract

We have studied the propagation of prechirped Gaussian pulse pairs in a fiber Bragg grating dispersion-managed system. We discovered that, under quite general conditions, a number of individual pulses evolve to a stable bound multisoliton solution, with fixed values for the phase difference and the distance between adjacent pulses. These stable multisoliton solutions may propagate for long distances without deformation, with the ultimate distance limitation imposed by the noise amplification.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
    [CrossRef]
  2. J. P. Gordon and L. F. Mollenauer, Opt. Lett. 24, 223 (1999).
    [CrossRef]
  3. D. S. Govan, W. Forysiak, and N. J. Doran, Opt. Lett. 23, 1523 (1998).
    [CrossRef]
  4. M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
    [CrossRef]
  5. C. Paré and P.-A. Bélanger, Opt. Commun. 168, 103 (1999).
    [CrossRef]
  6. J. H. B. Nijhof, W. Forysiak, and N. J. Doran, Opt. Lett. 23, 1674 (1998).
    [CrossRef]
  7. G. M. Carter, J. M. Jacob, C. R. Menyuk, E. A. Golovchenko, and A. N. Pilipetskii, Opt. Lett. 22, 513 (1997).
    [CrossRef] [PubMed]
  8. S. Kumar and A. Hasegawa, Opt. Lett. 22, 372 (1997).
    [CrossRef] [PubMed]
  9. Y. Kodama, S. Kumar, and A. Maruta, Opt. Lett. 22, 1689 (1997).
    [CrossRef]
  10. S. K. Turitsyn and V. M. Mezentsev, Opt. Lett. 23, 600 (1998).
    [CrossRef]
  11. V. V. Afanasjev and N. N. Akhmediev, Phys. Rev. E 53, 6471 (1996).
    [CrossRef]
  12. N. N. Akmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997).
    [CrossRef]
  13. J. M. Soto-Crespo and N. N. Akhmediev, J. Opt. Soc. Am. B 16, 674 (1999).
    [CrossRef]
  14. F. Oullette, Opt. Lett. 12, 847 (1987).
    [CrossRef]

1999

1998

1997

1996

V. V. Afanasjev and N. N. Akhmediev, Phys. Rev. E 53, 6471 (1996).
[CrossRef]

1995

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[CrossRef]

1987

Afanasjev, V. V.

V. V. Afanasjev and N. N. Akhmediev, Phys. Rev. E 53, 6471 (1996).
[CrossRef]

Akhmediev, N. N.

J. M. Soto-Crespo and N. N. Akhmediev, J. Opt. Soc. Am. B 16, 674 (1999).
[CrossRef]

V. V. Afanasjev and N. N. Akhmediev, Phys. Rev. E 53, 6471 (1996).
[CrossRef]

Akmediev, N. N.

N. N. Akmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997).
[CrossRef]

Ankiewicz, A.

N. N. Akmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997).
[CrossRef]

Bélanger, P.-A.

C. Paré and P.-A. Bélanger, Opt. Commun. 168, 103 (1999).
[CrossRef]

Carter, G. M.

Doran, N. J.

Forysiak, W.

Golovchenko, E. A.

Gordon, J. P.

Govan, D. S.

Hasegawa, A.

Jacob, J. M.

Knox, F. M.

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

Kodama, Y.

Kubota, H.

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[CrossRef]

Kumar, S.

Maruta, A.

Menyuk, C. R.

Mezentsev, V. M.

Mollenauer, L. F.

Nakazawa, M.

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[CrossRef]

Nijhof, J. H. B.

Oullette, F.

Paré, C.

C. Paré and P.-A. Bélanger, Opt. Commun. 168, 103 (1999).
[CrossRef]

Pilipetskii, A. N.

Smith, N. J.

N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave Technol. 15, 1808 (1997).
[CrossRef]

Soto-Crespo, J. M.

J. M. Soto-Crespo and N. N. Akhmediev, J. Opt. Soc. Am. B 16, 674 (1999).
[CrossRef]

N. N. Akmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997).
[CrossRef]

Turitsyn, S. K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reflectivity (dashed curve) and time delay (solid curve) corresponding to any one of the chirped fiber Bragg gratings used for periodic dispersion compensation.

Fig. 2
Fig. 2

Evolution of a pulse pair with initial zero phase difference through a distance of 60 Mm.

Fig. 3
Fig. 3

Trajectories of two pulse pairs with arbitrary initial phase difference in the interaction plane. The initial values are indicated by filled circles. The two trajectories converge to oscillate about the stability point given by θo=0.48 rad, ρo=29 ps, where θo and ρo are, respectively, the phase difference and the distance between peaks of the bound state.

Fig. 4
Fig. 4

Evolution of a group of three pulses with an initial phase difference of Π between adjacent pulses. Convergence to a stable multisoliton state is slower than in the pulse pair case, but pulse separation is well maintained.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dRdz+iδR=-iκzS exp-iFzl2,
dSdz-iδS=iκzR expiFzl2,
U0,T=P1/2k=0n-1exp-1+iCT+kτ022T02+iΦk,

Metrics