Abstract

Polarization mode dispersion causes solitons to emit background radiation, which degrades transmission quality. It is shown theoretically and confirmed by numerical simulations that dispersion-managed solitons can trap part of that radiation into localized eigenmodes, thus yielding improvement in transmission quality compared with that of conventional solitons.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole and J. Nagel, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  6.
  2. L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk, Opt. Lett. 14, 1219 (1989); B. Bakhshi, J. Hansryd, P. A. Andrekson, J. Brentel, E. Koltreit, B.-E. Olsson, and M. Karlsson, Electron. Lett. 35, 65 (1999).
    [CrossRef] [PubMed]
  3. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, Opt. Lett. 16, 1231 (1991).
    [CrossRef] [PubMed]
  4. L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  12, pp. 450–453.
  5. M. Matsumoto, Y. Akagi, and A. Hasegawa, J. Lightwave Technol. 15, 584 (1997).
    [CrossRef]
  6. T. I. Lakoba and D. J. Kaup, Phys. Rev. E 56, 6147 (1997).
    [CrossRef]
  7. Y. Chen and H. Haus, Opt. Lett. 25, 290 (2000).
    [CrossRef]
  8. Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998).
    [CrossRef]
  9. T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
    [CrossRef]

2000

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

Y. Chen and H. Haus, Opt. Lett. 25, 290 (2000).
[CrossRef]

1998

Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998).
[CrossRef]

1997

M. Matsumoto, Y. Akagi, and A. Hasegawa, J. Lightwave Technol. 15, 584 (1997).
[CrossRef]

T. I. Lakoba and D. J. Kaup, Phys. Rev. E 56, 6147 (1997).
[CrossRef]

1991

1989

Akagi, Y.

M. Matsumoto, Y. Akagi, and A. Hasegawa, J. Lightwave Technol. 15, 584 (1997).
[CrossRef]

Chen, H. H.

Chen, Y.

Cretegny, T.

Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk, Opt. Lett. 14, 1219 (1989); B. Bakhshi, J. Hansryd, P. A. Andrekson, J. Brentel, E. Koltreit, B.-E. Olsson, and M. Karlsson, Electron. Lett. 35, 65 (1999).
[CrossRef] [PubMed]

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  12, pp. 450–453.

Hasegawa, A.

M. Matsumoto, Y. Akagi, and A. Hasegawa, J. Lightwave Technol. 15, 584 (1997).
[CrossRef]

Haus, H.

Kaup, D. J.

T. I. Lakoba and D. J. Kaup, Phys. Rev. E 56, 6147 (1997).
[CrossRef]

Kivshar, Yu. S.

Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998).
[CrossRef]

Lakoba, T. I.

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

T. I. Lakoba and D. J. Kaup, Phys. Rev. E 56, 6147 (1997).
[CrossRef]

Mamyshev, P. V.

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  12, pp. 450–453.

Matsumoto, M.

M. Matsumoto, Y. Akagi, and A. Hasegawa, J. Lightwave Technol. 15, 584 (1997).
[CrossRef]

Menyuk, C. R.

Mollenauer, L. F.

L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk, Opt. Lett. 14, 1219 (1989); B. Bakhshi, J. Hansryd, P. A. Andrekson, J. Brentel, E. Koltreit, B.-E. Olsson, and M. Karlsson, Electron. Lett. 35, 65 (1999).
[CrossRef] [PubMed]

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  12, pp. 450–453.

Nagel, J.

C. D. Poole and J. Nagel, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  6.

Pelinovsky, D. E.

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998).
[CrossRef]

Peyrard, M.

Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998).
[CrossRef]

Poole, C. D.

C. D. Poole and J. Nagel, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  6.

Smith, K.

Wai, P. K. A.

Chaos

T. I. Lakoba and D. E. Pelinovsky, Chaos 10, 539 (2000).
[CrossRef]

J. Lightwave Technol.

M. Matsumoto, Y. Akagi, and A. Hasegawa, J. Lightwave Technol. 15, 584 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. E

T. I. Lakoba and D. J. Kaup, Phys. Rev. E 56, 6147 (1997).
[CrossRef]

Phys. Rev. Lett.

Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998).
[CrossRef]

Other

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  12, pp. 450–453.

C. D. Poole and J. Nagel, in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap.  6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relative energy of PMD-induced radiation. See text for details.

Fig. 2
Fig. 2

Amplitudes of the principal (dashed curves) and radiation (solid curves) components of the pulse in a fiber with PMD. Dotted curve, initial soliton profile; thin curves, conventional soliton after 10,000  km; thick curves, DM soliton for S=1.5 after 10,000  km.

Fig. 3
Fig. 3

Waveforms of three adjacent solitons at the output of a fiber with PMD. (a) Conventional solitons, (b) DM solitons for S=1.5. Each figure shows waveforms for 100 different realizations of PMD. Other parameters are found in the text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

uoutut-Δtr˜s˜+2rsδtutt-s˜*r˜*,
dE/dz=-π ln 2/8Dp/TFWHM2E,
|uim|u0,t|2/uim2u0,t2,

Metrics