Abstract

A very fast >100 kHz acousto-optic scanning system, which relies on two counterpropagating acoustic waves with the same frequency modulation, is proposed and experimentally demonstrated. This scheme completely suppresses linear frequency chirp and thus permits very fast nonlinear scans and nonconstant linear scans. By changing the phase between the modulating signals, this scheme also provides very fast longitudinal scans of the focal point.

© 2000 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).
  2. A. VanderLugt and A. M. Bardos, Appl. Opt. 31, 4058 (1992).
    [CrossRef] [PubMed]
  3. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
    [CrossRef]
  4. R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
    [CrossRef] [PubMed]
  5. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
    [CrossRef] [PubMed]
  6. One- and two-dimensional nonlinear scans can also be obtained with two and four acoustic transducers, respectively, attached to a single crystal.
  7. Our analysis is readily adapted for other laser beam shapes, with small changes of numerical constants.
  8. N. Davidson, A. A. Friesem, and E. Hasman, Appl. Opt. 31, 5426 (1992).
    [CrossRef] [PubMed]
  9. N. Davidson and A. A. Friesem, J. Opt. Soc. Am. A 10, 1725 (1993).
    [CrossRef]
  10. Brimrose Model TEF-110-60.
  11. The condition fmax<2fmin ensures the separation of the +1,-1 diffraction order from the +1,0 one.
  12. O. Bryngdahl and W. H. Lee, Appl. Opt. 15, 183 (1976).
    [CrossRef] [PubMed]

2000 (3)

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

1993 (1)

1992 (2)

1976 (1)

Bardos, A. M.

Bryngdahl, O.

Chevy, F.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Dalibard, J.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Davidson, N.

Durfee, D. S.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Friedman, N.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Friesem, A. A.

Hasman, E.

Ketterle, W.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Khaykovich, L.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Kohl, M.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Kuklewicz, C. E.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Lee, W. H.

Madison, K. W.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Onofrio, R.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

Ozeri, R.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Raman, C.

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

VanderLugt, A.

A. VanderLugt and A. M. Bardos, Appl. Opt. 31, 4058 (1992).
[CrossRef] [PubMed]

A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).

Wohlleben, W.

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Phys. Rev. A (1)

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, Phys. Rev. A 61, 031403(R) (2000).
[CrossRef]

Phys. Rev. Lett. (2)

R. Onofrio, D. S. Durfee, C. Raman, M. Kohl, C. E. Kuklewicz, and W. Ketterle, Phys. Rev. Lett. 84, 810 (2000).
[CrossRef] [PubMed]

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[CrossRef] [PubMed]

Other (5)

One- and two-dimensional nonlinear scans can also be obtained with two and four acoustic transducers, respectively, attached to a single crystal.

Our analysis is readily adapted for other laser beam shapes, with small changes of numerical constants.

A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).

Brimrose Model TEF-110-60.

The condition fmax<2fmin ensures the separation of the +1,-1 diffraction order from the +1,0 one.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics