Abstract

We show how to exploit the high quadratic nonlinear coefficient of the organic crystal N-(4-nitrophenyl)-L-prolinol for generation and parametric mixing of ultrashort pulses by use of tilted-pulse techniques. The effective crystal length for subpicosecond operation is shown to be enhanced from tens of micrometers to tens of millimeters. Efficient frequency doubling of 100-fs pulses is predicted in walk-off-compensated geometries with peak intensities of a few megawatts per square centimeter.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
  2. I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
    [CrossRef]
  3. G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
    [CrossRef]
  4. Z. Wang, D. J. Hagan, E. W. VanStryland, J. Zyss, P. Vidakovik, and W. E. Torruellas, J. Opt. Soc. Am. B 14, 76 (1997).
    [CrossRef]
  5. V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, Sov. J. Quantum Electron. 4, 1090 (1975).
    [CrossRef]
  6. O. E. Martnez, IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  7. G. Szab and Z. Bor, Appl. Phys. B 50, 51 (1990).
    [CrossRef]
  8. R. Danielius, A. Paskarskas, P. Di Trapani, A. Andreoni, C. Solcia, and P. Foggi, Opt. Lett. 21, 973 (1996); A. Dubietis, G. Valiulis, G. Tamošauskas, D. Danielius, and A. Piskarskas, Opt. Lett. 22, 1071 (1997); G. Valiulis, A. Dubietis, R. Danielius, D. Caironi, A. Visconti, and P. Di Trapani, J. Opt. Soc. Am. B 16, 722 (1999).
    [CrossRef] [PubMed]
  9. P. Di Trapani, D. Caironi, G. Valiulis, R. Danielius, and A. Piskarskas, Phys. Rev. Lett. 81, 570 (1998).
    [CrossRef]
  10. X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
    [CrossRef]
  11. C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B 11, 2434 (1994).
    [CrossRef]
  12. P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
    [CrossRef]
  13. G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
    [CrossRef]

1999

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

1998

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
[CrossRef]

P. Di Trapani, D. Caironi, G. Valiulis, R. Danielius, and A. Piskarskas, Phys. Rev. Lett. 81, 570 (1998).
[CrossRef]

1997

1996

1994

1990

G. Szab and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

1989

O. E. Martnez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

1984

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).

1975

V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, Sov. J. Quantum Electron. 4, 1090 (1975).
[CrossRef]

Andreoni, A.

Baden, J.

I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Banfi, G. P.

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
[CrossRef]

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

Bhar, G. C.

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

Bor, Z.

G. Szab and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Caironi, D.

P. Di Trapani, D. Caironi, G. Valiulis, R. Danielius, and A. Piskarskas, Phys. Rev. Lett. 81, 570 (1998).
[CrossRef]

Coquillay, M.

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).

Danielius, R.

Datta, P. K.

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
[CrossRef]

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

Degiorgio, V.

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
[CrossRef]

Di Trapani, P.

Donelli, G.

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
[CrossRef]

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

Foggi, P.

Fortusini, D.

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
[CrossRef]

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

Hagan, D. J.

Karpenko, S. G.

V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, Sov. J. Quantum Electron. 4, 1090 (1975).
[CrossRef]

Kornienko, N. E.

V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, Sov. J. Quantum Electron. 4, 1090 (1975).
[CrossRef]

Ledoux, I.

I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Lepers, C.

I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Liu, X.

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

Martnez, O. E.

O. E. Martnez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

Menyuk, C. R.

Nicoud, J. F.

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).

Paskarskas, A.

Perigaud, A.

I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Piskarskas, A.

P. Di Trapani, D. Caironi, G. Valiulis, R. Danielius, and A. Piskarskas, Phys. Rev. Lett. 81, 570 (1998).
[CrossRef]

Qian, L. J.

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

Schiek, R.

Sherwood, J. N.

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439 (1998).
[CrossRef]

Solcia, C.

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Strizhevskii, V. L.

V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, Sov. J. Quantum Electron. 4, 1090 (1975).
[CrossRef]

Szab, G.

G. Szab and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B 11, 2434 (1994).
[CrossRef]

Torruellas, W. E.

Valiulis, G.

P. Di Trapani, D. Caironi, G. Valiulis, R. Danielius, and A. Piskarskas, Phys. Rev. Lett. 81, 570 (1998).
[CrossRef]

VanStryland, E. W.

Vidakovik, P.

Volosov, V. D.

V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, Sov. J. Quantum Electron. 4, 1090 (1975).
[CrossRef]

Wang, Z.

Wise, F. W.

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

Zyss, J.

Z. Wang, D. J. Hagan, E. W. VanStryland, J. Zyss, P. Vidakovik, and W. E. Torruellas, J. Opt. Soc. Am. B 14, 76 (1997).
[CrossRef]

I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).

Appl. Phys. B

G. Szab and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

IEEE J. Quantum Electron.

O. E. Martnez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

J. Chem. Phys.

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).

J. Opt. Soc. Am. B

Opt. Commun.

P. K. Datta, D. Fortusini, G. Donelli, G. P. Banfi, V. Degiorgio, J. N. Sherwood, and G. C. Bhar, Opt. Commun. 149, 331 (1998).
[CrossRef]

I. Ledoux, C. Lepers, A. Perigaud, J. Baden, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Phys. Rev. Lett.

P. Di Trapani, D. Caironi, G. Valiulis, R. Danielius, and A. Piskarskas, Phys. Rev. Lett. 81, 570 (1998).
[CrossRef]

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

Sov. J. Quantum Electron.

V. D. Volosov, S. G. Karpenko, N. E. Kornienko, and V. L. Strizhevskii, Sov. J. Quantum Electron. 4, 1090 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Tilt angle required for exact GVM cancellation in phase-matched type I SH generation in NPP as a function of pump wavelength. (b) Corresponding effective dispersion lengths at the FF and the SH. Solid curves, FF; dashed curves, SH. Pulse duration τ=100 fs. A and N stand for anomalous and normal dispersion, respectively.

Fig. 2
Fig. 2

(a) Effective dispersion lengths at the FF and the SH and (dashed curves) temporal walk-off length as a function of tilt angle for a fixed pump wavelength, λ=1.6 µm. (b) Dispersion and walk-off lengths as a function of pump wavelength for a fixed tilt angle ψ0=24.9°. In both cases, θ=θpm and τ=100 fs.

Fig. 3
Fig. 3

Simulated evolution of the peak intensity of the FF and the SH signals as a function of crystal length. Solid curves, 1+1 temporal evolution with GVM compensation; dotted–dashed curves, 2+1 spatiotemporal full evolution with GVM compensation; dotted curves, evolution without GVM compensation; dashed curves, 1+1 temporal evolution with GVM compensation including absorption. Inset, output SH pulses. Conditions: phase matching, I0=10 MW/cm2, w0=3 mm, and τ=100 fs.

Fig. 4
Fig. 4

Detailed evolution of the SH pulse under the conditions of Fig. 3 (a) with and (b) without GVM compensation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

iA1z-k122A1t2+12k12A1x2+iΓ12A1+K1A1*A2 exp-iΔkz=0,
iA2z-k222A2t2+12k22A2x2-iρtA2x-iρxA2x+iΓ22A2+K2A12 expiΔkz=0,
tanψ=-mλd cos β,
uν=kν+tanψtanρν/c,
gν=kν-1kνtanψ2c,
iA1z-g122A1t2+iΓ12A1+K1A1*A2 exp-iΔkz0,
iA2z-g222A2t2-iρuA2t+iΓ22A2+K2A12 expiΔkz0,

Metrics