Abstract

A novel high-resolution confocal measurement of nanometric displacement that uses a simple 2×1 optical fiber coupler is presented. The basic principle is to detect interferometrically the change in the phase difference between two adjacent input fibers of the coupler that results from the nonuniform wave-front curvature of the reflected light. Measurement of subnanometer axial modulation, which permits high-resolution displacement sensing by optical means, is demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984); T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).
  2. D. K. Hamilton, T. Wilson, and C. J. R. Sheppard, Opt. Lett. 6, 625 (1981).
    [CrossRef] [PubMed]
  3. S. Kimura and T. Wilson, Appl. Opt. 30, 2143 (1991); R. Juskaitis and T. Wilson, 31, 4569 (1992).
  4. M. Doi, Y. Iwasaki, T. Shionoya, and K. Okamoto, IEEE Photon. Technol. Lett. 9, 651 (1997).
    [CrossRef]
  5. T. Pangaribuan, S. Jiang, and M. Ohtsu, Electron. Lett. 29, 1978 (1993).
    [CrossRef]
  6. T. R. Corle, C. H. Chou, and G. S. Kino, Opt. Lett. 11, 770 (1986).
    [CrossRef] [PubMed]

1997

M. Doi, Y. Iwasaki, T. Shionoya, and K. Okamoto, IEEE Photon. Technol. Lett. 9, 651 (1997).
[CrossRef]

1993

T. Pangaribuan, S. Jiang, and M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

1991

1986

1981

Chou, C. H.

Corle, T. R.

Doi, M.

M. Doi, Y. Iwasaki, T. Shionoya, and K. Okamoto, IEEE Photon. Technol. Lett. 9, 651 (1997).
[CrossRef]

Hamilton, D. K.

Iwasaki, Y.

M. Doi, Y. Iwasaki, T. Shionoya, and K. Okamoto, IEEE Photon. Technol. Lett. 9, 651 (1997).
[CrossRef]

Jiang, S.

T. Pangaribuan, S. Jiang, and M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Juskaitis, R.

Kimura, S.

Kino, G. S.

Ohtsu, M.

T. Pangaribuan, S. Jiang, and M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Okamoto, K.

M. Doi, Y. Iwasaki, T. Shionoya, and K. Okamoto, IEEE Photon. Technol. Lett. 9, 651 (1997).
[CrossRef]

Pangaribuan, T.

T. Pangaribuan, S. Jiang, and M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Sheppard, C. J. R.

D. K. Hamilton, T. Wilson, and C. J. R. Sheppard, Opt. Lett. 6, 625 (1981).
[CrossRef] [PubMed]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984); T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).

Shionoya, T.

M. Doi, Y. Iwasaki, T. Shionoya, and K. Okamoto, IEEE Photon. Technol. Lett. 9, 651 (1997).
[CrossRef]

Wilson, T.

Appl. Opt.

Electron. Lett.

T. Pangaribuan, S. Jiang, and M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Doi, Y. Iwasaki, T. Shionoya, and K. Okamoto, IEEE Photon. Technol. Lett. 9, 651 (1997).
[CrossRef]

Opt. Lett.

Other

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984); T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Working principle of interferometric confocal measurement of nanometric displacement by use of a 2×1 optical fiber coupler with two input ends. Refer to the text for details.

Fig. 2
Fig. 2

Experimental setup. The inset shows the fiber coupler with two input fiber ends near the focal plane of the lens.

Fig. 3
Fig. 3

Experimental axial scan obtained by low-pass filtering of the photodiode signal, which shows the typical confocal behavior.

Fig. 4
Fig. 4

Nanometric-displacement measurement signals. The maximum peak-to-peak voltage corresponds to axial modulation of (a) 30 nm and (b) 8 nm. Long-term drift in (a) arises from mechanical or environmental vibration of the system.

Fig. 5
Fig. 5

Confocal signals of subnanometer displacement when the mirror is vibrated at an amplitude of 0.5 nm. (a) Output signal on the oscilloscope, (b) pure drift signal without mirror vibration, (c) subtracted net result showing 0.5-nm modulation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I2 Rea1a2*expiθ,
II0 sinc2u/2cos θ.

Metrics