Abstract

Blazed-binary gratings for which a blazed effect with binary etches is achieved under normal incidence offer first-order diffraction efficiencies larger than those of blazed-échelette gratings in the resonance domain [Opt. Lett. 23, 1081 (1998)]. We provide further insight into the behavior of blazed-binary gratings and show that they operate efficiently under symmetrical mounting and over a wide field-angle interval. These properties are illustrated with theoretical and experimental results obtained for an 1000-line/mm grating at 633 nm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ph. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, Opt. Lett. 23, 1081 (1998).
    [CrossRef]
  2. Ph. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, J. Opt. Soc. Am. A 16, 1143 (1999).
    [CrossRef]
  3. Ph. Lalanne, J. Opt. Soc. Am. A 16, 2517 (1999).
    [CrossRef]
  4. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, Opt. Lett. 16, 1921 (1991).
    [CrossRef] [PubMed]
  5. W. M. Farn, Appl. Opt. 31, 4453 (1992).
    [CrossRef] [PubMed]
  6. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]
  7. D. Maystre, M. Nevière, and R. Petit, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 6, p. 174.
  8. E. Noponen, J. Turunen, and A. Vasara, Appl. Opt. 31, 5910 (1992).
    [CrossRef] [PubMed]

1999 (2)

1998 (1)

1997 (1)

1992 (2)

1991 (1)

Astilean, S.

Cambril, E.

Chavel, P.

Farn, W. M.

Haidner, H.

Kipfer, P.

Lalanne, Ph.

Launois, H.

Li, L.

Maystre, D.

D. Maystre, M. Nevière, and R. Petit, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 6, p. 174.

Nevière, M.

D. Maystre, M. Nevière, and R. Petit, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 6, p. 174.

Noponen, E.

Petit, R.

D. Maystre, M. Nevière, and R. Petit, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 6, p. 174.

Stork, W.

Streibl, N.

Turunen, J.

Vasara, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope photograph of a 990-nm-period blazed-binary grating. The center-to-center pillar spacing is 330 nm.

Fig. 2
Fig. 2

Transmitted first-order efficiency as a function of angle of incidence (in air). Pluses, experimental results; solid curves, numerical results. The efficiencies are obtained for unpolarized light and for illumination from the glass substrate. The first order is evanescent for incidence angles larger than 21° for the classical diffraction case.

Fig. 3
Fig. 3

Distribution of the magnitude of the magnetic field vector inside a 990-nm-period 1D blazed-binary grating under the symmetrical mount for TM polarization. White areas correspond to large magnitudes. The white arrows represent the average Poynting vectors. The ridge fill factors are 0.2086, 0.3745, and 0.4894. The corresponding effective indices are 1.129, 1.387, and 1.645, the same as those of the blazed-binary grating of Fig. 1.

Fig. 4
Fig. 4

Field-angle behavior of the transmitted first-order efficiencies for several grating profiles under unpolarized illumination λ=633 nm from the glass substrate. Pluses, experimental results of Fig. 2; dashed curve, 990-nm-period échelette gratings etched into glass; solid curve, four-level 949-nm-period grating optimized for maximum efficiency at normal incidence (the transition-point locations are given in the first line of Table 2 in Ref. 8).

Metrics