Abstract

Whispering-gallery modes in silica microspheres can be accessed very efficiently with the recently introduced stripline pedestal antiresonant reflecting optical waveguide (SPARROW) structure. This integrated-optics coupling technique creates novel application opportunities for the high-Q spherical cavities. We report the demonstration of a narrow-band wavelength-drop configuration utilizing SPARROW waveguides and a silica microsphere.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, J.-P. Laine, D. R. Lim, L. C. Kimerling, S. T. Chu, and H. A. Haus, Opt. Lett. 25, 73 (2000).
    [CrossRef]
  2. J.-P. Laine, B. E. Little, D. R. Lim, and H. A. Haus, Digest of Integrated Photonics Research, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 238–240.
  3. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  4. V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
    [CrossRef]
  5. A. Serpenguzel, S. Arnold, and G. Griffel, Opt. Lett. 20, 654 (1995).
    [CrossRef]
  6. M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
    [CrossRef]
  7. B. E. Little, J.-P. Laine, and S. T. Chu, Opt. Lett. 22, 4 (1997).
    [CrossRef] [PubMed]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  9. B. E. Little, J.-P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
    [CrossRef]
  10. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
    [CrossRef]

2000 (1)

1999 (3)

1997 (3)

1995 (1)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Arnold, S.

Birks, T. A.

Cai, M.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Cheung, G.

Chu, S. T.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Griffel, G.

Haus, H. A.

B. E. Little, J.-P. Laine, D. R. Lim, L. C. Kimerling, S. T. Chu, and H. A. Haus, Opt. Lett. 25, 73 (2000).
[CrossRef]

B. E. Little, J.-P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

J.-P. Laine, B. E. Little, D. R. Lim, and H. A. Haus, Digest of Integrated Photonics Research, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 238–240.

Hunziker, G.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Ilchenko, V. S.

Jacques, F.

Kimerling, L. C.

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Laine, J.-P.

B. E. Little, J.-P. Laine, D. R. Lim, L. C. Kimerling, S. T. Chu, and H. A. Haus, Opt. Lett. 25, 73 (2000).
[CrossRef]

B. E. Little, J.-P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

B. E. Little, J.-P. Laine, and S. T. Chu, Opt. Lett. 22, 4 (1997).
[CrossRef] [PubMed]

J.-P. Laine, B. E. Little, D. R. Lim, and H. A. Haus, Digest of Integrated Photonics Research, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 238–240.

Lim, D. R.

B. E. Little, J.-P. Laine, D. R. Lim, L. C. Kimerling, S. T. Chu, and H. A. Haus, Opt. Lett. 25, 73 (2000).
[CrossRef]

J.-P. Laine, B. E. Little, D. R. Lim, and H. A. Haus, Digest of Integrated Photonics Research, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 238–240.

Little, B. E.

B. E. Little, J.-P. Laine, D. R. Lim, L. C. Kimerling, S. T. Chu, and H. A. Haus, Opt. Lett. 25, 73 (2000).
[CrossRef]

B. E. Little, J.-P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

B. E. Little, J.-P. Laine, and S. T. Chu, Opt. Lett. 22, 4 (1997).
[CrossRef] [PubMed]

J.-P. Laine, B. E. Little, D. R. Lim, and H. A. Haus, Digest of Integrated Photonics Research, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 238–240.

Maleki, L.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Serpenguzel, A.

Vahala, K.

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

Yao, X. S.

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Cai, G. Hunziker, and K. Vahala, IEEE Photon. Technol. Lett. 11, 686 (1999).
[CrossRef]

J. Lightwave Technol. (2)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

B. E. Little, J.-P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
[CrossRef]

Opt. Lett. (5)

Other (1)

J.-P. Laine, B. E. Little, D. R. Lim, and H. A. Haus, Digest of Integrated Photonics Research, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 238–240.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a planar wavelength-drop device based on SPARROW waveguides and a silica microsphere resonator. In this concept, power is transferred from the throughput guide into the drop guide via the WGM’s of a microsphere. The sphere is placed above and between the two SPARROW pedestals.

Fig. 2
Fig. 2

Calculated effective-index values for spheres and SPARROW’s in the parameter range of our experiments. The intersection of the fundamental SPARROW and 1st higher-order radial sphere mode curves shows that our current device configuration strongly favors the excitation of this particular WGM. Such coupling selectivity can potentially be exploited in sensing applications.

Fig. 3
Fig. 3

Schematic of the selective sphere-polar-mode drop arrangement. Particular polar modes can be selected for power transfer by appropriate microsphere positioning along the longitudinal axis separating the gradually diverging waveguide pedestals. The input–drop waveguide geometry is depicted at the top of the figure, and three cross-sectional views picturing the guides coupled for power transfer via odd sphere polar modes are shown at the bottom (the dotted lines crossing the spheres represent the spheroidal curvature symmetry axis). As the sphere is moved to the right along the longitudinal axis [from (a) to (c)], the guide separation increases, and, one by one, lower-order polar modes fall out of simultaneous field overlap with both waveguides, thus ending power transfer in the corresponding wavelength channels.

Fig. 4
Fig. 4

Data plot from a power-transfer experiment. The bottom trace is the drop port detector output, and the top trace is the throughput. Linewidths are in the 20–30-MHz range. Device parameters: SPARROW guide width, 6 µm; guide separation, <5 µm; sphere diameter, 260 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

AO=-κIκO exp-ϕ2i1-αtItO exp-ϕiAI,

Metrics