Abstract

We demonstrate, for what we believe is the first time, recording of a femtosecond image hologram by illumination with a single pair of high-intensity femtosecond pulses in a broad inhomogeneous bandwidth spectral hole-burning material consisting of a polymer film doped with anthraceno-phthalocyanine dye molecules. High efficiency of spectral hole burning is achieved by preillumination of the sample at a low temperature to convert the dye molecules into an unstable tautomer form.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (1999).
    [CrossRef]
  2. E. Abraham, K. Minoshima, and H. Matsumoto, Opt. Commun. 176, 441 (2000).
    [CrossRef]
  3. M. P. Shih, Appl. Opt. 38, 743 (1999).
    [CrossRef]
  4. E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
    [CrossRef]
  5. E. N. Leith, P. A. Lyon, and H. Chen, J. Opt. Soc. Am. A 8, 1014 (1991).
    [CrossRef]
  6. A. M. Weiner, IEEE J. Quantum Electron. 28, 2251 (1992).
    [CrossRef]
  7. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, and Y. Feinman, Opt. Lett. 20, 1728 (1995).
    [CrossRef]
  8. A. Rebane, J. Aaviksoo, and J. Kuhl, Appl. Phys. Lett. 54, 93 (1989).
    [CrossRef]
  9. A. Rebane, Proc. SPIE 3468, 270 (1998).
    [CrossRef]
  10. A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
    [CrossRef]
  11. I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, J. Phys. Chem. A 101, 6202 (1997).
  12. W. E. Moerner, ed., Persistent Spectral Hole Burning. Science and Applications (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  13. A. Rebane and J. Aaviksoo, Opt. Lett. 13, 993 (1988).
    [CrossRef] [PubMed]
  14. A. Rebane and O. Ollikainen, Opt. Commun. 78, 327 (1990).
    [CrossRef]

2000

E. Abraham, K. Minoshima, and H. Matsumoto, Opt. Commun. 176, 441 (2000).
[CrossRef]

1999

A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (1999).
[CrossRef]

M. P. Shih, Appl. Opt. 38, 743 (1999).
[CrossRef]

1998

A. Rebane, Proc. SPIE 3468, 270 (1998).
[CrossRef]

1997

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, J. Phys. Chem. A 101, 6202 (1997).

1995

A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
[CrossRef]

P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, and Y. Feinman, Opt. Lett. 20, 1728 (1995).
[CrossRef]

1992

A. M. Weiner, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

1991

1990

A. Rebane and O. Ollikainen, Opt. Commun. 78, 327 (1990).
[CrossRef]

1989

A. Rebane, J. Aaviksoo, and J. Kuhl, Appl. Phys. Lett. 54, 93 (1989).
[CrossRef]

1988

Aaviksoo, J.

A. Rebane, J. Aaviksoo, and J. Kuhl, Appl. Phys. Lett. 54, 93 (1989).
[CrossRef]

A. Rebane and J. Aaviksoo, Opt. Lett. 13, 993 (1988).
[CrossRef] [PubMed]

Abraham, E.

E. Abraham, K. Minoshima, and H. Matsumoto, Opt. Commun. 176, 441 (2000).
[CrossRef]

Chang, W. S. C.

Chen, H.

Erni, D.

A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
[CrossRef]

Feinman, Y.

Gaeta, A. L.

A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (1999).
[CrossRef]

Gao, J.

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Heeger, A. J.

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Kuhl, J.

A. Rebane, J. Aaviksoo, and J. Kuhl, Appl. Phys. Lett. 54, 93 (1989).
[CrossRef]

Leith, E. N.

Lyon, P. A.

Maniloff, E. S.

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Matsumoto, H.

E. Abraham, K. Minoshima, and H. Matsumoto, Opt. Commun. 176, 441 (2000).
[CrossRef]

Mattes, B. R.

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Mazurenko, Y. T.

McBranch, D. W.

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Minoshima, K.

E. Abraham, K. Minoshima, and H. Matsumoto, Opt. Commun. 176, 441 (2000).
[CrossRef]

Ollikainen, O.

A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
[CrossRef]

A. Rebane and O. Ollikainen, Opt. Commun. 78, 327 (1990).
[CrossRef]

Rebane, A.

A. Rebane, Proc. SPIE 3468, 270 (1998).
[CrossRef]

A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
[CrossRef]

A. Rebane and O. Ollikainen, Opt. Commun. 78, 327 (1990).
[CrossRef]

A. Rebane, J. Aaviksoo, and J. Kuhl, Appl. Phys. Lett. 54, 93 (1989).
[CrossRef]

A. Rebane and J. Aaviksoo, Opt. Lett. 13, 993 (1988).
[CrossRef] [PubMed]

Renge, I.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, J. Phys. Chem. A 101, 6202 (1997).

Schwoerer, H.

A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
[CrossRef]

Shih, M. P.

Spahni, H.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, J. Phys. Chem. A 101, 6202 (1997).

Sun, P. C.

Vacar, D.

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Wang, H.

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Weiner, A. M.

A. M. Weiner, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Wild, U. P.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, J. Phys. Chem. A 101, 6202 (1997).

A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
[CrossRef]

Wolleb, H.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, J. Phys. Chem. A 101, 6202 (1997).

Yu, P. K. L.

Appl. Opt.

Appl. Phys. Lett.

A. Rebane, J. Aaviksoo, and J. Kuhl, Appl. Phys. Lett. 54, 93 (1989).
[CrossRef]

IEEE J. Quantum Electron.

A. M. Weiner, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

J. Lumin.

A. Rebane, O. Ollikainen, D. Erni, H. Schwoerer, and U. P. Wild, J. Lumin. 64, 283 (1995).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. A

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, J. Phys. Chem. A 101, 6202 (1997).

Opt. Commun.

A. Rebane and O. Ollikainen, Opt. Commun. 78, 327 (1990).
[CrossRef]

E. Abraham, K. Minoshima, and H. Matsumoto, Opt. Commun. 176, 441 (2000).
[CrossRef]

E. S. Maniloff, D. Vacar, D. W. McBranch, H. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, Opt. Commun. 141, 243 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (1999).
[CrossRef]

Proc. SPIE

A. Rebane, Proc. SPIE 3468, 270 (1998).
[CrossRef]

Other

W. E. Moerner, ed., Persistent Spectral Hole Burning. Science and Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption spectrum of the sample at low temperature T=4 K. Thin solid curve, stable tautomer form before illumination; dashed–dotted curve, unstable tautomer form produced by illumination with spectrally broad light at 780 nm; dotted curve, after exposure to 250 pulses with 150µJ cm-2 intensity at 764-nm wavelength; thick solid curve, power spectrum of the pulses.

Fig. 2
Fig. 2

Dependence of the hologram’s diffraction efficiency on the number of exposures. One exposure corresponds to illumination with one pulse pair of femtosecond object and reference pulses with an average intensity of 0.15 µJ cm-2. Solid curve, numerical simulation based on our experimental conditions. Inset, the same data points on a logarithmic scale; dotted line, a fit to the quadratic dependence.

Fig. 3
Fig. 3

Interference hologram recorded with a single femtosecond exposure. Hologram image (a) before and (b) after exposure. Horizontal interference fringes appear as the result of interference between the reference hologram and the single-exposure hologram. The reference-beam direction of the single-pulse exposure is slightly tilted in the vertical direction.

Metrics