Abstract

A complex spectral grating is accumulated by repeated application of a pair of low-power optical programming pulses to a short-term persistent inhomogeneously broadened transition in Tm:YAG at 4.5 K and then probed to investigate the buildup dynamics. The necessary frequency stability is obtained by locking a cw Ti:sapphire laser to a regenerating transient spectral hole in the same transition. Grating accumulation is demonstrated for both a periodic spectral grating, representing a true-time delay, and a complex spectral grating, permitting correlation-based pattern recognition. This work is a step toward demonstrating an optical coherent transient continuously programmed continuous processor.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
    [CrossRef]
  2. M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, Mater. Sci. Forum 315-317, 59 (1999), and references therein.
    [CrossRef]
  3. K. D. Merkel and W. R. Babbitt, Opt. Lett. 24, 172 (1999); K. D. Merkel, J. Zhao, K. S. Repasky, and W. R. Babbitt, Proc. SPIE 3802, 246 (1999).
    [CrossRef]
  4. W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).
  5. Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984); W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994); M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
    [CrossRef] [PubMed]
  6. K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996); Opt. Lett. 23, 528 (1998).
    [CrossRef] [PubMed]
  7. N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
    [CrossRef]
  8. R. K. Mohan, U. Elman, and S. Kroll, Opt. Commun. 158, 149 (1998); T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kroll, J. Opt. Soc. Am. B 16, 805 (1999).
    [CrossRef]

2000 (1)

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
[CrossRef]

1999 (2)

K. D. Merkel and W. R. Babbitt, Opt. Lett. 24, 172 (1999); K. D. Merkel, J. Zhao, K. S. Repasky, and W. R. Babbitt, Proc. SPIE 3802, 246 (1999).
[CrossRef]

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, Mater. Sci. Forum 315-317, 59 (1999), and references therein.
[CrossRef]

1998 (1)

R. K. Mohan, U. Elman, and S. Kroll, Opt. Commun. 158, 149 (1998); T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kroll, J. Opt. Soc. Am. B 16, 805 (1999).
[CrossRef]

1996 (1)

1991 (1)

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

1984 (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984); W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994); M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
[CrossRef] [PubMed]

1981 (1)

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).

Babbitt, W. R.

K. D. Merkel and W. R. Babbitt, Opt. Lett. 24, 172 (1999); K. D. Merkel, J. Zhao, K. S. Repasky, and W. R. Babbitt, Proc. SPIE 3802, 246 (1999).
[CrossRef]

K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996); Opt. Lett. 23, 528 (1998).
[CrossRef] [PubMed]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984); W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994); M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
[CrossRef] [PubMed]

Bai, Y. S.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984); W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994); M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
[CrossRef] [PubMed]

Carlson, N. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984); W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994); M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
[CrossRef] [PubMed]

Carlsten, J. L.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
[CrossRef]

Cone, R. L.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
[CrossRef]

Dyke, T. R.

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, Mater. Sci. Forum 315-317, 59 (1999), and references therein.
[CrossRef]

Elman, U.

R. K. Mohan, U. Elman, and S. Kroll, Opt. Commun. 158, 149 (1998); T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kroll, J. Opt. Soc. Am. B 16, 805 (1999).
[CrossRef]

Gainullin, D. F.

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

Hesselink, W. H.

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).

Kroll, S.

R. K. Mohan, U. Elman, and S. Kroll, Opt. Commun. 158, 149 (1998); T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kroll, J. Opt. Soc. Am. B 16, 805 (1999).
[CrossRef]

Manson, N. B.

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, Mater. Sci. Forum 315-317, 59 (1999), and references therein.
[CrossRef]

Merkel, K. D.

Mohan, R. K.

R. K. Mohan, U. Elman, and S. Kroll, Opt. Commun. 158, 149 (1998); T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kroll, J. Opt. Soc. Am. B 16, 805 (1999).
[CrossRef]

Mossberg, T. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984); W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994); M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
[CrossRef] [PubMed]

Pryde, G. J.

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, Mater. Sci. Forum 315-317, 59 (1999), and references therein.
[CrossRef]

Samartsev, V. V.

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

Sellars, M. J.

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, Mater. Sci. Forum 315-317, 59 (1999), and references therein.
[CrossRef]

Sellin, P. B.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
[CrossRef]

Stelmahk, M. F.

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

Strickland, N. M.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
[CrossRef]

Sun, Y.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
[CrossRef]

Wiersma, D. A.

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).

Yakshin, M. A.

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

Yufin, M. A.

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

Zuikov, V. A.

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984); W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994); M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).

Mater. Sci. Forum (1)

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, Mater. Sci. Forum 315-317, 59 (1999), and references therein.
[CrossRef]

Opt. Commun. (1)

R. K. Mohan, U. Elman, and S. Kroll, Opt. Commun. 158, 149 (1998); T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kroll, J. Opt. Soc. Am. B 16, 805 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, Phys. Rev. B 62, 1437 (2000).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. A. Zuikov, D. F. Gainullin, V. V. Samartsev, M. F. Stelmahk, M. A. Yufin, and M. A. Yakshin, Sov. J. Quantum Electron. 21, 477 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Input pulses for continuous programming of a spectral grating by accumulation. Two programming pulses are repeated N times. (a) True-time-delay grating: two brief (120-ns) reference pulses, separated by 800 ns, program a periodic grating representing a true-time delay. (b) Pattern waveform grating: a pattern (120 ns per bit) and a brief reference pulse, separated by 4.2 µs, program a complex grating representing that pattern and time delay. The 5-bit pattern +,+,+,-,+ was modulated in amplitude and phase.

Fig. 2
Fig. 2

Emitted output signal from an accumulated grating as a function of the number of times, N, that the programming pulse pairs were repeated. (a) True-time delay: the single probe pulse is shown on the left, followed by the true-time-delay emitted signal on the right. (b) Correlation signal processing: the applied pattern probe pulse is on the left, +,+,+,-,+, followed by spurious echo signals and then the autocorrelation peak of the data with the stored pattern.

Fig. 3
Fig. 3

Plots of the peak power of the emitted echo signals in (a) Fig. 2(a) and (b) Fig. 2(b) versus the time that the grating was probed, showing the dynamics of the spectral grating buildup toward steady state. Simulated curves are also shown for an optically thin sample.

Metrics